Maurer Lydia R, Chetlur Prahan, Zhuo Daisy, El Hechi Majed, Velmahos George C, Dunn Jack, Bertsimas Dimitris, Kaafarani Haytham M A
Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts.
Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts.
Ann Surg. 2023 Jan 1;277(1):e8-e15. doi: 10.1097/SLA.0000000000004714. Epub 2020 Dec 23.
We sought to assess the performance of the Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) tool in elderly emergency surgery (ES) patients.
The POTTER tool was derived using a novel Artificial Intelligence (AI)-methodology called optimal classification trees and validated for prediction of ES outcomes. POTTER outperforms all existent risk-prediction models and is available as an interactive smartphone application. Predicting outcomes in elderly patients has been historically challenging and POTTER has not yet been tested in this population.
All patients ≥65 years who underwent ES in the ACS-NSQIP 2017 database were included. POTTER's performance for 30-day mortality and 18 postoperative complications (eg, respiratory or renal failure) was assessed using c-statistic methodology, with planned sub-analyses for patients 65 to 74, 75 to 84, and 85+ years.
A total of 29,366 patients were included, with mean age 77, 55.8% females, and 62% who underwent emergency general surgery. POTTER predicted mortality accurately in all patients over 65 (c-statistic 0.80). Its best performance was in patients 65 to 74 years (c-statistic 0.84), and its worst in patients ≥85 years (c-statistic 0.71). POTTER had the best discrimination for predicting septic shock (c-statistic 0.90), respiratory failure requiring mechanical ventilation for ≥48 hours (c-statistic 0.86), and acute renal failure (c-statistic 0.85).
POTTER is a novel, interpretable, and highly accurate predictor of in-hospital mortality in elderly ES patients up to age 85 years. POTTER could prove useful for bedside counseling and for benchmarking of ES care.
我们旨在评估急诊手术风险预测最优树(POTTER)工具在老年急诊手术(ES)患者中的性能。
POTTER工具是使用一种名为最优分类树的新型人工智能(AI)方法得出的,并已针对ES结局预测进行了验证。POTTER优于所有现有的风险预测模型,并且可以作为交互式智能手机应用程序使用。历史上,预测老年患者的结局一直具有挑战性,并且POTTER尚未在该人群中进行测试。
纳入2017年美国外科医师学会国家外科质量改进计划(ACS-NSQIP)数据库中所有接受ES的≥65岁患者。使用c统计方法评估POTTER对30天死亡率和18种术后并发症(例如呼吸或肾衰竭)的预测性能,并计划对65至74岁、75至84岁和85岁以上的患者进行亚组分析。
共纳入29366例患者,平均年龄77岁,女性占55.8%,62%接受急诊普通外科手术。POTTER在所有65岁以上患者中准确预测了死亡率(c统计量为0.80)。其最佳性能体现在65至74岁患者中(c统计量为0.84),最差性能体现在≥85岁患者中(c统计量为0.71)。POTTER在预测感染性休克(c统计量为0.90)、需要机械通气≥48小时的呼吸衰竭(c统计量为0.86)和急性肾衰竭(c统计量为0.85)方面具有最佳的区分能力。
POTTER是一种新颖、可解释且高度准确的预测85岁及以下老年ES患者院内死亡率的工具。POTTER可能对床边咨询和ES护理的基准评估有用。