Suppr超能文献

一种用于胃肠道间质瘤术后复发预测的可解释人工智能模型:一项观察性队列研究。

An interpretable AI model for recurrence prediction after surgery in gastrointestinal stromal tumour: an observational cohort study.

作者信息

Bertsimas Dimitris, Margonis Georgios Antonios, Tang Seehanah, Koulouras Angelos, Antonescu Cristina R, Brennan Murray F, Martin-Broto Javier, Rutkowski Piotr, Stasinos Georgios, Wang Jane, Pikoulis Emmanouil, Bylina Elzbieta, Sobczuk Pawel, Gutierrez Antonio, Jadeja Bhumika, Tap William D, Chi Ping, Singer Samuel

机构信息

Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

EClinicalMedicine. 2023 Sep 9;64:102200. doi: 10.1016/j.eclinm.2023.102200. eCollection 2023 Oct.

Abstract

BACKGROUND

There are several models that predict the risk of recurrence following resection of localised, primary gastrointestinal stromal tumour (GIST). However, assessment of calibration is not always feasible and when performed, calibration of current GIST models appears to be suboptimal. We aimed to develop a prognostic model to predict the recurrence of GIST after surgery with both good discrimination and calibration by uncovering and harnessing the non-linear relationships among variables that predict recurrence.

METHODS

In this observational cohort study, the data of 395 adult patients who underwent complete resection (R0 or R1) of a localised, primary GIST in the pre-imatinib era at Memorial Sloan Kettering Cancer Center (NY, USA) (recruited 1982-2001) and a European consortium (Spanish Group for Research in Sarcomas, 80 sites) (recruited 1987-2011) were used to train an interpretable Artificial Intelligence (AI)-based model called Optimal Classification Trees (OCT). The OCT predicted the probability of recurrence after surgery by capturing non-linear relationships among predictors of recurrence. The data of an additional 596 patients from another European consortium (Polish Clinical GIST Registry, 7 sites) (recruited 1981-2013) who were also treated in the pre-imatinib era were used to externally validate the OCT predictions with regard to discrimination (Harrell's C-index and Brier score) and calibration (calibration curve, Brier score, and Hosmer-Lemeshow test). The calibration of the Memorial Sloan Kettering (MSK) GIST nomogram was used as a comparative gold standard. We also evaluated the clinical utility of the OCT and the MSK nomogram by performing a Decision Curve Analysis (DCA).

FINDINGS

The internal cohort included 395 patients (median [IQR] age, 63 [54-71] years; 214 men [54.2%]) and the external cohort included 556 patients (median [IQR] age, 60 [52-68] years; 308 men [55.4%]). The Harrell's C-index of the OCT in the external validation cohort was greater than that of the MSK nomogram (0.805 (95% CI: 0.803-0.808) vs 0.788 (95% CI: 0.786-0.791), respectively). In the external validation cohort, the slope and intercept of the calibration curve of the main OCT were 1.041 and 0.038, respectively. In comparison, the slope and intercept of the calibration curve for the MSK nomogram was 0.681 and 0.032, respectively. The MSK nomogram overestimated the recurrence risk throughout the entire calibration curve. Of note, the Brier score was lower for the OCT compared to the MSK nomogram (0.147 vs 0.564, respectively), and the Hosmer-Lemeshow test was insignificant (P = 0.087) for the OCT model but significant (P < 0.001) for the MSK nomogram. Both results confirmed the superior discrimination and calibration of the OCT over the MSK nomogram. A decision curve analysis showed that the AI-based OCT model allowed for superior decision making compared to the MSK nomogram for both patients with 25-50% recurrence risk as well as those with >50% risk of recurrence.

INTERPRETATION

We present the first prognostic models of recurrence risk in GIST that demonstrate excellent discrimination, calibration, and clinical utility on external validation. Additional studies for further validation are warranted. With further validation, these tools could potentially improve patient counseling and selection for adjuvant therapy.

FUNDING

The NCI SPORE in Soft Tissue Sarcoma and NCI Cancer Center Support Grants.

摘要

背景

有多种模型可预测局限性原发性胃肠道间质瘤(GIST)切除术后的复发风险。然而,校准评估并不总是可行的,并且在进行校准时,当前的GIST模型校准似乎并不理想。我们旨在通过揭示和利用预测复发的变量之间的非线性关系,开发一种预后模型,以预测GIST手术后的复发情况,同时具有良好的区分度和校准度。

方法

在这项观察性队列研究中,我们使用了美国纽约纪念斯隆凯特琳癌症中心(1982 - 2001年招募)和一个欧洲联盟(西班牙肉瘤研究小组,80个地点,1987 - 2011年招募)在伊马替尼时代之前接受局限性原发性GIST完全切除(R0或R1)的395例成年患者的数据,来训练一个名为最优分类树(OCT)的基于人工智能(AI)的可解释模型。OCT通过捕捉复发预测因子之间的非线性关系来预测术后复发的概率。来自另一个欧洲联盟(波兰临床GIST登记处,7个地点,1981 - 2013年招募)且同样在伊马替尼时代之前接受治疗的另外596例患者的数据,用于对OCT预测在区分度(Harrell氏C指数和Brier评分)和校准度(校准曲线、Brier评分和Hosmer - Lemeshow检验)方面进行外部验证。纪念斯隆凯特琳(MSK)GIST列线图的校准用作比较金标准。我们还通过进行决策曲线分析(DCA)评估了OCT和MSK列线图的临床实用性。

结果

内部队列包括395例患者(年龄中位数[四分位间距]为63[54 - 71]岁;男性214例[54.2%]),外部队列包括556例患者(年龄中位数[四分位间距]为60[52 - 68]岁;男性308例[55.4%])。外部验证队列中OCT的Harrell氏C指数大于MSK列线图(分别为0.805[95%置信区间:0.803 - 0.808]和0.788[95%置信区间:0.786 - 0.791])。在外部验证队列中,主要OCT校准曲线的斜率和截距分别为1.041和0.038。相比之下,MSK列线图校准曲线的斜率和截距分别为0.681和0.032。MSK列线图在整个校准曲线上高估了复发风险。值得注意的是,OCT的Brier评分低于MSK列线图(分别为(0.147)和(0.564)),OCT模型的Hosmer - Lemeshow检验无统计学意义((P = 0.087)),而MSK列线图的该检验具有统计学意义((P < 0.001))。这两个结果均证实了OCT在区分度和校准度方面优于MSK列线图。决策曲线分析表明,对于复发风险为25% - 50%以及复发风险>50%的患者,基于AI的OCT模型与MSK列线图相比,能做出更好的决策。

解读

我们展示了首个GIST复发风险的预后模型,该模型在外部验证中表现出出色的区分度、校准度和临床实用性。有必要进行进一步验证的额外研究。经过进一步验证,这些工具可能会改善患者咨询和辅助治疗的选择。

资助

美国国立癌症研究所软组织肉瘤专项研究项目及国立癌症研究所癌症中心支持基金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7abb/10507206/662f9fe66663/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验