Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.
Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.
Hum Mol Genet. 2021 Feb 25;29(24):3900-3918. doi: 10.1093/hmg/ddaa279.
C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes. Transcriptomic changes in cell proliferation, inflammation and neuronal pathways are found late in disease and alternative splicing changes provide early molecular markers that worsen with disease progression. Isogenic sublines of mice with 800, 500 or 50 G4C2 repeats generated from the single-copy C9-500 line show longer repeats result in earlier onset, increased disease penetrance and increased levels of RNA foci and dipeptide RAN protein aggregates. These data demonstrate G4C2 repeat length is an important driver of disease and identify alternative splicing changes as early biomarkers of C9orf72 ALS/FTD.
C9orf72 ALS/FTD 患者表现出显著的临床异质性,但重复扩展突变的复杂生物学限制了我们对该疾病的理解。BAC 转基因小鼠被用于更好地理解 C9orf72 ALS/FTD 的分子机制和重复长度效应。对这些小鼠的遗传分析表明,BAC 转基因而非整合位点效应导致 ALS/FTD 表型。在疾病的晚期发现细胞增殖、炎症和神经元途径的转录组变化,并且可变剪接变化提供了随着疾病进展而恶化的早期分子标志物。从单拷贝 C9-500 系生成的具有 800、500 或 50 G4C2 重复的同基因亚系小鼠显示出更长的重复导致更早的发病、更高的疾病穿透率以及 RNA 焦点和二肽 RAN 蛋白聚集体水平的增加。这些数据表明 G4C2 重复长度是疾病的重要驱动因素,并确定可变剪接变化作为 C9orf72 ALS/FTD 的早期生物标志物。