Suppr超能文献

基于机器学习的响应面法对超声金属焊接中剥离和剪切强度的多目标优化。

Multi-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodology.

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Math Biosci Eng. 2020 Oct 28;17(6):7411-7427. doi: 10.3934/mbe.2020379.

Abstract

Ultrasonic metal welding (UMW) is a solid-state joining technique with varied industrial applications. Despite of its numerous advantages, UMW has a relative narrow operating window and is sensitive to variations in process conditions. As such, it is imperative to quantitatively characterize the influence of welding parameters on the resulting joint quality. The quantification model can be subsequently used to optimize the parameters. Conventional response surface methodology (RSM) usually employs linear or polynomial models, which may not be able to capture the intricate, nonlin-ear input-output relationships in UMW. Furthermore, some UMW applications call for simultaneous optimization of multiple quality indices such as peel strength, shear strength, electrical conductivity, and thermal conductivity. To address these challenges, this paper develops a machine learning (ML)- based RSM to model the input-output relationships in UMW and jointly optimize two quality indices, namely, peel and shear strengths. The performance of various ML methods including spline regression, Gaussian process regression (GPR), support vector regression (SVR), and conventional polynomial re-gression models with different orders is compared. A case study using experimental data shows that GPR with radial basis function (RBF) kernel and SVR with RBF kernel achieve the best prediction accuracy. The obtained response surface models are then used to optimize a compound joint strength indicator that is defined as the average of normalized shear and peel strengths. In addition, the case study reveals different patterns in the response surfaces of shear and peel strengths, which has not been systematically studied in the literature. While developed for the UMW application, the method can be extended to other manufacturing processes.

摘要

超声金属焊接(UMW)是一种具有多种工业应用的固态连接技术。尽管它有许多优点,但 UMW 的操作窗口相对较窄,对工艺条件的变化敏感。因此,必须定量地描述焊接参数对焊接接头质量的影响。量化模型可随后用于优化参数。传统的响应面法(RSM)通常采用线性或多项式模型,这些模型可能无法捕捉 UMW 中复杂的非线性输入-输出关系。此外,一些 UMW 应用需要同时优化多个质量指标,如剥离强度、剪切强度、导电性和导热性。为了解决这些挑战,本文提出了一种基于机器学习(ML)的 RSM 来模拟 UMW 中的输入-输出关系,并联合优化两个质量指标,即剥离强度和剪切强度。比较了各种 ML 方法的性能,包括样条回归、高斯过程回归(GPR)、支持向量回归(SVR)以及不同阶次的传统多项式回归模型。使用实验数据的案例研究表明,具有径向基函数(RBF)核的 GPR 和具有 RBF 核的 SVR 实现了最佳的预测精度。然后,使用获得的响应面模型来优化定义为归一化剪切和剥离强度平均值的复合接头强度指标。此外,案例研究揭示了剪切和剥离强度的响应面中的不同模式,这在文献中尚未系统研究过。虽然该方法是为 UMW 应用开发的,但它可以扩展到其他制造工艺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验