Suppr超能文献

同位素比质谱法和光谱技术在微塑料表征中的应用。

Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization.

机构信息

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.

ORISE, USEPA, Cincinnati, OH, 45220, USA.

出版信息

Talanta. 2021 Mar 1;224:121743. doi: 10.1016/j.talanta.2020.121743. Epub 2020 Oct 15.

Abstract

Micro- and nano-scale plastic particles in the environment result from their direct release and degradation of larger plastic debris. Relative to macro-sized plastics, these small particles are of special concern due to their potential impact on marine, freshwater, and terrestrial systems. While microplastic (MP) pollution has been widely studied in geographic regions globally, many questions remain about its origins. It is assumed that urban environments are the main contributors but systematic studies are lacking. The absence of standard methods to characterize and quantify MPs and smaller particles in environmental and biological matrices has hindered progress in understanding their geographic origins and sources, distribution, and impact. Hence, the development and standardization of methods is needed to establish the potential environmental and human health risks. In this study, we investigated stable carbon isotope ratio mass spectrometry (IRMS), attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy, and micro-Raman spectroscopy (μ-Raman) as complementary techniques for characterization of common plastics. Plastic items selected for comparative analysis included food packaging, containers, straws, and polymer pellets. The ability of IRMS to distinguish weathered samples was also investigated using the simulated weathering conditions of ultraviolet (UV) light and heat. Our IRMS results show a difference between the δC values for plant-derived and petroleum-based polymers. We also found differences between plastic items composed of the same polymer but from different countries, and between some recycled and nonrecycled plastics. Furthermore, increasing δC values were observed after exposure to UV light. The results of the three techniques, and their advantages and limitations, are discussed.

摘要

环境中的微纳米塑料颗粒源自其直接释放和较大塑料碎片的降解。相对于宏观塑料,这些小颗粒由于其对海洋、淡水和陆地系统的潜在影响而受到特别关注。虽然微塑料 (MP) 污染已在全球地理区域得到广泛研究,但关于其来源仍存在许多问题。据推测,城市环境是主要贡献者,但缺乏系统研究。缺乏用于表征和量化环境和生物基质中 MPs 和较小颗粒的标准方法,阻碍了对其地理起源和来源、分布和影响的理解。因此,需要开发和标准化方法以确定潜在的环境和人类健康风险。在这项研究中,我们调查了稳定碳同位素比质谱 (IRMS)、衰减全反射-傅里叶变换红外 (ATR-FTIR) 光谱和微拉曼光谱 (μ-Raman) 作为表征常见塑料的补充技术。用于比较分析的塑料物品包括食品包装、容器、吸管和聚合物颗粒。还研究了使用紫外线 (UV) 光和热的模拟风化条件来区分风化样品的 IRMS 能力。我们的 IRMS 结果显示,植物衍生和石油基聚合物的 δC 值存在差异。我们还发现了由相同聚合物但来自不同国家的塑料物品之间以及一些回收和不可回收塑料之间的差异。此外,在暴露于 UV 光后观察到 δC 值增加。讨论了三种技术的结果及其优缺点。

相似文献

1
Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization.
Talanta. 2021 Mar 1;224:121743. doi: 10.1016/j.talanta.2020.121743. Epub 2020 Oct 15.
2
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.
3
Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS).
Chemosphere. 2017 Jun;176:47-56. doi: 10.1016/j.chemosphere.2017.02.090. Epub 2017 Feb 23.
4
Plastic pollution and potential solutions.
Sci Prog. 2018 Sep 1;101(3):207-260. doi: 10.3184/003685018X15294876706211. Epub 2018 Jul 19.
6
Microplastic concentration, characterization, and size distribution in the Delaware Bay estuary.
Chemosphere. 2024 Aug;361:142523. doi: 10.1016/j.chemosphere.2024.142523. Epub 2024 Jun 3.
7
Separation and Analysis of Microplastics and Nanoplastics in Complex Environmental Samples.
Acc Chem Res. 2019 Apr 16;52(4):858-866. doi: 10.1021/acs.accounts.8b00602. Epub 2019 Mar 29.
8
μATR-FTIR Spectral Libraries of Plastic Particles (FLOPP and FLOPP-e) for the Analysis of Microplastics.
Anal Chem. 2021 Dec 7;93(48):15878-15885. doi: 10.1021/acs.analchem.1c02549. Epub 2021 Nov 23.
9
Sources, transport, measurement and impact of nano and microplastics in urban watersheds.
Rev Environ Sci Biotechnol. 2020 Apr 8;19:275-336. doi: 10.1007/s11157-020-09529-x.
10
Characteristics of microplastic polymer-derived dissolved organic matter and its potential as a disinfection byproduct precursor.
Water Res. 2020 May 15;175:115678. doi: 10.1016/j.watres.2020.115678. Epub 2020 Mar 4.

引用本文的文献

1
From Harm to Hope: Tackling Microplastics' Perils with Recycling Innovation.
Molecules. 2025 Jun 10;30(12):2535. doi: 10.3390/molecules30122535.
2
imaging of microplastics in living organisms based on mass spectrometry technology.
Eco Environ Health. 2024 Jun 26;3(4):412-417. doi: 10.1016/j.eehl.2024.05.007. eCollection 2024 Dec.
3
Microplastics and Nanoplastics in Atheromas and Cardiovascular Events.
N Engl J Med. 2024 Mar 7;390(10):900-910. doi: 10.1056/NEJMoa2309822.
4
Current trends and challenges in the analysis of marine environmental contaminants by isotope ratio mass spectrometry.
Anal Bioanal Chem. 2024 Jan;416(1):71-85. doi: 10.1007/s00216-023-05029-3. Epub 2023 Nov 18.
7
Mass Spectrometry Insight for Assessing the Destiny of Plastics in Seawater.
Polymers (Basel). 2023 Mar 19;15(6):1523. doi: 10.3390/polym15061523.
8
Analytical methods for microplastics in the environment: a review.
Environ Chem Lett. 2023;21(1):383-401. doi: 10.1007/s10311-022-01525-7. Epub 2022 Sep 29.

本文引用的文献

2
Sources, transport, measurement and impact of nano and microplastics in urban watersheds.
Rev Environ Sci Biotechnol. 2020 Apr 8;19:275-336. doi: 10.1007/s11157-020-09529-x.
4
An overview of microplastics characterization by thermal analysis.
Chemosphere. 2020 Mar;242:125170. doi: 10.1016/j.chemosphere.2019.125170. Epub 2019 Oct 23.
5
Robust Automatic Identification of Microplastics in Environmental Samples Using FTIR Microscopy.
Anal Chem. 2019 Aug 6;91(15):9656-9664. doi: 10.1021/acs.analchem.9b01095. Epub 2019 Jul 23.
6
Raman Tweezers for Small Microplastics and Nanoplastics Identification in Seawater.
Environ Sci Technol. 2019 Aug 6;53(15):9003-9013. doi: 10.1021/acs.est.9b03105. Epub 2019 Jul 12.
7
Nano/microplastics in water and wastewater treatment processes - Origin, impact and potential solutions.
Water Res. 2019 Sep 15;161:621-638. doi: 10.1016/j.watres.2019.06.049. Epub 2019 Jun 20.
8
Microplastic pollution in streams spanning an urbanisation gradient.
Environ Pollut. 2019 Jul;250:292-299. doi: 10.1016/j.envpol.2019.03.105. Epub 2019 Apr 2.
9
Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process.
Water Res. 2019 Jun 15;157:228-237. doi: 10.1016/j.watres.2019.03.069. Epub 2019 Mar 29.
10
Rethinking microplastics as a diverse contaminant suite.
Environ Toxicol Chem. 2019 Apr;38(4):703-711. doi: 10.1002/etc.4371.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验