Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, 3584 Utrecht, The Netherlands.
Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, 3584 Utrecht, The Netherlands.
Int J Mol Sci. 2020 Dec 28;22(1):211. doi: 10.3390/ijms22010211.
Encephalopathy of Prematurity (EoP) is a major cause of morbidity in (extreme) preterm neonates. Though the majority of EoP research has focused on failure of oligodendrocyte maturation as an underlying pathophysiological mechanism, recent pioneer work has identified developmental disturbances in inhibitory interneurons to contribute to EoP. Here we investigated interneuron abnormalities in two experimental models of EoP and explored the potential of two promising treatment strategies, namely intranasal mesenchymal stem cells (MSCs) or insulin-like growth factor I (IGF1), to restore interneuron development. In rats, fetal inflammation and postnatal hypoxia led to a transient increase in total cortical interneuron numbers, with a layer-specific deficit in parvalbumin (PV)+ interneurons. Additionally, a transient excess of total cortical cell density was observed, including excitatory neuron numbers. In the hippocampal cornu ammonis (CA) 1 region, long-term deficits in total interneuron numbers and PV+ subtype were observed. In mice subjected to postnatal hypoxia/ischemia and systemic inflammation, total numbers of cortical interneurons remained unaffected; however, subtype analysis revealed a global, transient reduction in PV+ cells and a long-lasting layer-specific increase in vasoactive intestinal polypeptide (VIP)+ cells. In the dentate gyrus, a long-lasting deficit of somatostatin (SST)+ cells was observed. Both intranasal MSC and IGF1 therapy restored the majority of interneuron abnormalities in EoP mice. In line with the histological findings, EoP mice displayed impaired social behavior, which was partly restored by the therapies. In conclusion, induction of experimental EoP is associated with model-specific disturbances in interneuron development. In addition, intranasal MSCs and IGF1 are promising therapeutic strategies to aid interneuron development after EoP.
早产儿脑病 (EoP) 是极早产儿发病和致残的主要原因。虽然大多数 EoP 研究都集中在少突胶质细胞成熟失败作为潜在的病理生理机制,但最近的开创性工作已经确定抑制性中间神经元的发育障碍也与 EoP 有关。在这里,我们研究了两种 EoP 实验模型中的中间神经元异常,并探讨了两种有前途的治疗策略,即鼻内间充质干细胞 (MSCs) 或胰岛素样生长因子 I (IGF1),以恢复中间神经元发育的潜力。在大鼠中,胎儿炎症和产后缺氧导致皮质中间神经元总数短暂增加,而 PV+中间神经元则存在特定于层的缺陷。此外,还观察到皮质总细胞密度的短暂增加,包括兴奋性神经元数量。在海马角 (CA) 1 区,观察到总中间神经元数量和 PV+亚型的长期缺陷。在经历产后缺氧/缺血和全身炎症的小鼠中,皮质中间神经元的总数没有受到影响;然而,亚型分析显示 PV+细胞的总体短暂减少和 VIP+细胞的长期特定层增加。在齿状回中,SST+细胞长期减少。鼻内 MSC 和 IGF1 治疗均可恢复 EoP 小鼠的大多数中间神经元异常。与组织学发现一致,EoP 小鼠表现出社交行为障碍,而这些障碍在一定程度上可以通过治疗得到恢复。总之,实验性 EoP 的诱导与中间神经元发育的特定模型相关。此外,鼻内 MSCs 和 IGF1 是辅助 EoP 后中间神经元发育的有前途的治疗策略。