Rosenfeld Lawrence M, Sulway Dominic A, Sinclair Gary F, Anant Vikas, Thompson Mark G, Rarity John G, Silverstone Joshua W
Opt Express. 2020 Dec 7;28(25):37092-37102. doi: 10.1364/OE.386615.
Applied quantum optics stands to revolutionise many aspects of information technology, provided performance can be maintained when scaled up. Silicon quantum photonics satisfies the scaling requirements of miniaturisation and manufacturability, but at 1.55 µm it suffers from problematic linear and nonlinear loss. Here we show that, by translating silicon quantum photonics to the mid-infrared, a new quantum optics platform is created which can simultaneously maximise manufacturability and miniaturisation, while reducing loss. We demonstrate the necessary platform components: photon-pair generation, single-photon detection, and high-visibility quantum interference, all at wavelengths beyond 2 µm. Across various regimes, we observe a maximum net coincidence rate of 448 ± 12 Hz, a coincidence-to-accidental ratio of 25.7 ± 1.1, and, a net two-photon quantum interference visibility of 0.993 ± 0.017. Mid-infrared silicon quantum photonics will bring new quantum applications within reach.
应用量子光学有望彻底改变信息技术的许多方面,前提是在扩大规模时能保持性能。硅基量子光子学满足了小型化和可制造性的扩展要求,但在1.55微米波长下,它存在线性和非线性损耗问题。在此,我们表明,通过将硅基量子光子学转移到中红外波段,一个新的量子光学平台得以创建,该平台可以在降低损耗的同时,使可制造性和小型化达到最大化。我们展示了必要的平台组件:光子对产生、单光子探测和高可见度量子干涉,所有这些都在波长超过2微米的情况下实现。在各种条件下,我们观察到最大净符合率为448±12赫兹,符合与偶然比为25.7±1.1,以及净双光子量子干涉可见度为0.993±0.017。中红外硅基量子光子学将使新的量子应用成为可能。