Prabhakar Shashi, Shields Taylor, Dada Adetunmise C, Ebrahim Mehdi, Taylor Gregor G, Morozov Dmitry, Erotokritou Kleanthis, Miki Shigehito, Yabuno Masahiro, Terai Hirotaka, Gawith Corin, Kues Michael, Caspani Lucia, Hadfield Robert H, Clerici Matteo
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan.
Sci Adv. 2020 Mar 27;6(13):eaay5195. doi: 10.1126/sciadv.aay5195. eCollection 2020 Mar.
Quantum-enhanced optical systems operating within the 2- to 2.5-μm spectral region have the potential to revolutionize emerging applications in communications, sensing, and metrology. However, to date, sources of entangled photons have been realized mainly in the near-infrared 700- to 1550-nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting nanowire single-photon detectors, we demonstrate two-photon interference and polarization-entangled photon pairs at 2090 nm. These results open the 2- to 2.5-μm mid-infrared window for the development of optical quantum technologies such as quantum key distribution in next-generation mid-infrared fiber communication systems and future Earth-to-satellite communications.
工作在2至2.5微米光谱区域的量子增强光学系统,有潜力变革通信、传感和计量等新兴应用。然而,迄今为止,纠缠光子源主要是在近红外700至1550纳米光谱窗口实现的。在此,我们使用定制设计的铌酸锂晶体进行自发参量下转换,并采用特制的超导纳米线单光子探测器,在2090纳米处演示了双光子干涉和偏振纠缠光子对。这些结果为光学量子技术的发展开启了2至2.5微米的中红外窗口,比如下一代中红外光纤通信系统中的量子密钥分发以及未来的地对卫星通信。