Carroll T L
U.S. Naval Research Lab, Washington, DC 20375, USA.
Chaos. 2020 Dec;30(12):121109. doi: 10.1063/5.0038163.
It has been demonstrated that cellular automata had the highest computational capacity at the edge of chaos [N. H. Packard, in Dynamic Patterns in Complex Systems, edited by J. A. S. Kelso, A. J. Mandell, and M. F. Shlesinger (World Scientific, Singapore, 1988), pp. 293-301; C. G. Langton, Physica D 42(1), 12-37 (1990); J. P. Crutchfield and K. Young, in Complexity, Entropy, and the Physics of Information, edited by W. H. Zurek (Addison-Wesley, Redwood City, CA, 1990), pp. 223-269], the parameter at which their behavior transitioned from ordered to chaotic. This same concept has been applied to reservoir computers; a number of researchers have stated that the highest computational capacity for a reservoir computer is at the edge of chaos, although others have suggested that this rule is not universally true. Because many reservoir computers do not show chaotic behavior but merely become unstable, it is felt that a more accurate term for this instability transition is the "edge of stability." Here, I find two examples where the computational capacity of a reservoir computer decreases as the edge of stability is approached: in one case because generalized synchronization breaks down and in the other case because the reservoir computer is a poor match to the problem being solved. The edge of stability as an optimal operating point for a reservoir computer is not in general true, although it may be true in some cases.
已经证明,细胞自动机在混沌边缘具有最高的计算能力【N. H. 帕卡德,载于J. A. S. 凯尔索、A. J. 曼德尔和M. F. 施莱辛格编辑的《复杂系统中的动态模式》(世界科学出版社,新加坡,1988年),第293 - 301页;C. G. 兰顿,《物理D》42(1),12 - 37(1990年);J. P. 克鲁奇菲尔德和K. 扬,载于W. H. 祖雷克编辑的《复杂性、熵与信息物理学》(艾迪生 - 韦斯利出版社,加利福尼亚州红木城,1990年),第223 - 269页】,在该参数下其行为从有序转变为混沌。这一相同概念已应用于储层计算机;许多研究人员指出,储层计算机的最高计算能力处于混沌边缘,尽管也有其他人认为这一规则并非普遍适用。由于许多储层计算机并不表现出混沌行为,而仅仅变得不稳定,所以有人认为对于这种不稳定性转变,一个更准确的术语是“稳定边缘”。在此,我发现了两个例子,其中储层计算机的计算能力随着接近稳定边缘而降低:一种情况是因为广义同步失效,另一种情况是因为储层计算机与所解决的问题匹配不佳。作为储层计算机最佳工作点的稳定边缘一般来说并不成立,尽管在某些情况下可能成立。