Suppr超能文献

具有随机和优化时移的储层计算。

Reservoir computing with random and optimized time-shifts.

作者信息

Del Frate Enrico, Shirin Afroza, Sorrentino Francesco

机构信息

Mechanical Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

Chaos. 2021 Dec;31(12):121103. doi: 10.1063/5.0068941.

Abstract

We investigate the effects of application of random time-shifts to the readouts of a reservoir computer in terms of both accuracy (training error) and performance (testing error). For different choices of the reservoir parameters and different "tasks," we observe a substantial improvement in both accuracy and performance. We then develop a simple but effective technique to optimize the choice of the time-shifts, which we successfully test in numerical experiments.

摘要

我们从准确性(训练误差)和性能(测试误差)两方面研究了对储层计算机的读出值应用随机时间偏移的影响。对于储层参数的不同选择和不同的“任务”,我们观察到准确性和性能都有显著提高。然后,我们开发了一种简单而有效的技术来优化时间偏移的选择,并在数值实验中成功进行了测试。

相似文献

1
Reservoir computing with random and optimized time-shifts.
Chaos. 2021 Dec;31(12):121103. doi: 10.1063/5.0068941.
3
4
Rapid time series prediction with a hardware-based reservoir computer.
Chaos. 2018 Dec;28(12):123119. doi: 10.1063/1.5048199.
5
Next generation reservoir computing.
Nat Commun. 2021 Sep 21;12(1):5564. doi: 10.1038/s41467-021-25801-2.
6
Spatiotemporal signal classification via principal components of reservoir states.
Neural Netw. 2017 Jul;91:66-75. doi: 10.1016/j.neunet.2017.04.008. Epub 2017 Apr 24.
7
Transfer-RLS method and transfer-FORCE learning for simple and fast training of reservoir computing models.
Neural Netw. 2021 Nov;143:550-563. doi: 10.1016/j.neunet.2021.06.031. Epub 2021 Jul 6.
8
Machine-learning potential of a single pendulum.
Phys Rev E. 2022 May;105(5-1):054203. doi: 10.1103/PhysRevE.105.054203.
10
Time series reconstructing using calibrated reservoir computing.
Sci Rep. 2022 Sep 29;12(1):16318. doi: 10.1038/s41598-022-20331-3.

引用本文的文献

本文引用的文献

1
Next generation reservoir computing.
Nat Commun. 2021 Sep 21;12(1):5564. doi: 10.1038/s41467-021-25801-2.
2
Predicting amplitude death with machine learning.
Phys Rev E. 2021 Jul;104(1-1):014205. doi: 10.1103/PhysRevE.104.014205.
4
Do reservoir computers work best at the edge of chaos?
Chaos. 2020 Dec;30(12):121109. doi: 10.1063/5.0038163.
5
Dimension of reservoir computers.
Chaos. 2020 Jan;30(1):013102. doi: 10.1063/1.5128898.
6
Performance boost of time-delay reservoir computing by non-resonant clock cycle.
Neural Netw. 2020 Apr;124:158-169. doi: 10.1016/j.neunet.2020.01.010. Epub 2020 Jan 15.
7
Forecasting chaotic systems with very low connectivity reservoir computers.
Chaos. 2019 Dec;29(12):123108. doi: 10.1063/1.5120710.
8
Stability analysis of reservoir computers dynamics via Lyapunov functions.
Chaos. 2019 Oct;29(10):103147. doi: 10.1063/1.5123733.
9
Network structure effects in reservoir computers.
Chaos. 2019 Aug;29(8):083130. doi: 10.1063/1.5097686.
10
Reservoir Computing Universality With Stochastic Inputs.
IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):100-112. doi: 10.1109/TNNLS.2019.2899649. Epub 2019 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验