Malarz Krzysztof
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków, Poland.
Chaos. 2020 Dec;30(12):123123. doi: 10.1063/5.0022336.
We determine thresholds p for random site percolation on a triangular lattice for neighborhoods containing nearest (NN), next-nearest (2NN), next-next-nearest (3NN), next-next-next-nearest (4NN), and next-next-next-next-nearest (5NN) neighbors, and their combinations forming regular hexagons (3NN+2NN+NN, 5NN+4NN+NN, 5NN+4NN+3NN+2NN, and 5NN+4NN+3NN+2NN+NN). We use a fast Monte Carlo algorithm, by Newman and Ziff [Phys. Rev. E 64, 016706 (2001)], for obtaining the dependence of the largest cluster size on occupation probability. The method is combined with a method, by Bastas et al. [Phys. Rev. E 90, 062101 (2014)], for estimating thresholds from low statistics data. The estimated values of percolation thresholds are p(4NN)=0.192410(43), p(3NN+2NN)=0.232008(38), p(5NN+4NN)=0.140286(5), p(3NN+2NN+NN)=0.215484(19), p(5NN+4NN+NN)=0.131792(58), p(5NN+4NN+3NN+2NN)=0.117579(41), and p(5NN+4NN+3NN+2NN+NN)=0.115847(21). The method is tested on the standard case of site percolation on the triangular lattice, where p(NN)=p(2NN)=p(3NN)=p(5NN)=12 is recovered with five digits accuracy p(NN)=0.500029(46) by averaging over one thousand lattice realizations only.
我们确定了三角形晶格上随机位点渗流的阈值(p),这些阈值针对包含最近邻(NN)、次近邻(2NN)、次次近邻(3NN)、次次次近邻(4NN)和次次次次近邻(5NN)邻居的邻域,以及它们组合形成正六边形的情况(3NN + 2NN + NN、5NN + 4NN + NN、5NN + 4NN + 3NN + 2NN和5NN + 4NN + 3NN + 2NN + NN)。我们使用了由纽曼和齐夫[《物理评论E》64, 016706 (2001)]提出的快速蒙特卡罗算法,来获取最大团簇尺寸对占据概率的依赖性。该方法与巴斯塔斯等人[《物理评论E》90, 062101 (2014)]提出的从低统计数据估计阈值的方法相结合。渗流阈值的估计值为(p(4NN)=0.192410(43)),(p(3NN + 2NN)=0.232008(38)),(p(5NN + 4NN)=0.140286(5)),(p(3NN + 2NN + NN)=0.215484(19)),(p(5NN + 4NN + NN)=0.131792(58)),(p(5NN + 4NN + 3NN + 2NN)=0.117579(41)),以及(p(5NN + 4NN + 3NN + 2NN + NN)=0.115847(21))。该方法在三角形晶格上位点渗流的标准情况下进行了测试,通过仅对一千个晶格实现进行平均,以五位数字的精度(p(NN)=0.500029(46))恢复了(p(NN)=p(2NN)=p(3NN)=p(5NN)=\frac{1}{2})。