Suppr超能文献

卫生系统高消费人群的模式和预测因素:一项数据链接方案,用于结合队列研究和对有流浪史的成年人进行的随机对照试验。

Patterns and predictors of high-cost users of the health system: a data linkage protocol to combine a cohort study and randomised controlled trial of adults with a history of homelessness.

机构信息

Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada

MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.

出版信息

BMJ Open. 2020 Dec 30;10(12):e039966. doi: 10.1136/bmjopen-2020-039966.

Abstract

INTRODUCTION

Homelessness is a global issue with a detrimental impact on health. Individuals who experience homelessness are often labelled as frequent healthcare users; yet it is a small group of individuals who disproportionately use the majority of services. This protocol outlines the approach to combine survey data from a prospective cohort study and randomised controlled trial with administrative healthcare data to characterise patterns and predictors of healthcare utilisation among a group of adults with a history of homelessness.

METHODS AND ANALYSIS

This cohort study will apply survey data from the Health and Housing in Transition study and the At Home/Chez Soi study linked with administrative healthcare databases in Ontario, Canada. We will use count models to quantify the associations between baseline predisposing, enabling, and need factors and hospitalisations, emergency department visits and physician visits in the following year. Subsequently, we will identify individuals who are high-cost users of the health system (top 5%) and characterise their patterns of healthcare utilisation. Logistic regression will be applied to develop a set of models to predict who will be high-cost users over the next 5 years based on predisposing, enabling and need factors. Calibration and discrimination will be estimated with bootstrapped optimism (bootstrap performance-test performance) to ensure the model performance is not overestimated.

ETHICS AND DISSEMINATION

This study is approved by the St Michael's Hospital Research Ethics Board and the University of Toronto Research Ethics Board. Findings will be disseminated through publication in peer-reviewed journals, presentations at research conferences and brief reports made available to healthcare professionals and the general public.

TRIAL REGISTRATION NUMBER

This is a secondary data analysis of a cohort study and randomized trial. The At Home/Chez Soi study has been registered with the International Standard Randomised Control Trial Number Register and assigned ISRCTN42520374.

摘要

简介

无家可归是一个全球性问题,对健康有不利影响。无家可归者通常被贴上经常使用医疗保健的标签;然而,只有一小部分人不成比例地使用了大部分服务。本方案概述了一种方法,即将一项前瞻性队列研究和一项随机对照试验的调查数据与安大略省的行政医疗保健数据相结合,以描述一组有过无家可归史的成年人的医疗保健利用模式和预测因素。

方法和分析

这项队列研究将应用健康和住房过渡研究和在家/安家研究的调查数据,并与加拿大安大略省的行政医疗保健数据库相联系。我们将使用计数模型来量化基线倾向、使能和需求因素与下一年住院、急诊就诊和医生就诊之间的关联。随后,我们将确定医疗系统高成本使用者(前 5%),并描述他们的医疗保健利用模式。逻辑回归将用于开发一组模型,根据倾向、使能和需求因素预测谁将在未来 5 年内成为高成本使用者。通过自举优化(bootstrap performance-test performance)来估计校准和区分度,以确保模型性能不会被高估。

伦理和传播

这项研究得到了圣迈克尔医院研究伦理委员会和多伦多大学研究伦理委员会的批准。研究结果将通过发表在同行评议期刊上、在研究会议上的演讲以及向医疗保健专业人员和公众提供的简要报告来传播。

试验注册号

这是对一项队列研究和随机试验的二次数据分析。安家研究已在国际标准随机对照试验编号登记处注册,并分配了 ISRCTN42520374。

相似文献

本文引用的文献

1
Let the question determine the methods: descriptive epidemiology done right.让问题决定方法:正确的描述性流行病学。
Br J Cancer. 2020 Oct;123(9):1351-1352. doi: 10.1038/s41416-020-1019-z. Epub 2020 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验