Suppr超能文献

对干细胞友好的支架生物材料:在骨组织工程和再生医学中的应用

Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine.

作者信息

Zhang Yongtao, Wu Di, Zhao Xia, Pakvasa Mikhail, Tucker Andrew Blake, Luo Huaxiu, Qin Kevin H, Hu Daniel A, Wang Eric J, Li Alexander J, Zhang Meng, Mao Yukun, Sabharwal Maya, He Fang, Niu Changchun, Wang Hao, Huang Linjuan, Shi Deyao, Liu Qing, Ni Na, Fu Kai, Chen Connie, Wagstaff William, Reid Russell R, Athiviraham Aravind, Ho Sherwin, Lee Michael J, Hynes Kelly, Strelzow Jason, He Tong-Chuan, El Dafrawy Mostafa

机构信息

Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.

Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States.

出版信息

Front Bioeng Biotechnol. 2020 Dec 14;8:598607. doi: 10.3389/fbioe.2020.598607. eCollection 2020.

Abstract

Bone is a dynamic organ with high regenerative potential and provides essential biological functions in the body, such as providing body mobility and protection of internal organs, regulating hematopoietic cell homeostasis, and serving as important mineral reservoir. Bone defects, which can be caused by trauma, cancer and bone disorders, pose formidable public health burdens. Even though autologous bone grafts, allografts, or xenografts have been used clinically, repairing large bone defects remains as a significant clinical challenge. Bone tissue engineering (BTE) emerged as a promising solution to overcome the limitations of autografts and allografts. Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Successful stem cell-based BTE requires a combination of abundant mesenchymal progenitors with osteogenic potential, suitable biofactors to drive osteogenic differentiation, and cell-friendly scaffold biomaterials. Thus, the crux of BTE lies within the use of cell-friendly biomaterials as scaffolds to overcome extensive bone defects. In this review, we focus on the biocompatibility and cell-friendly features of commonly used scaffold materials, including inorganic compound-based ceramics, natural polymers, synthetic polymers, decellularized extracellular matrix, and in many cases, composite scaffolds using the above existing biomaterials. It is conceivable that combinations of bioactive materials, progenitor cells, growth factors, functionalization techniques, and biomimetic scaffold designs, along with 3D bioprinting technology, will unleash a new era of complex BTE scaffolds tailored to patient-specific applications.

摘要

骨骼是一种具有高再生潜力的动态器官,在体内发挥着重要的生物学功能,如提供身体活动能力、保护内部器官、调节造血细胞稳态以及作为重要的矿物质储存库。由创伤、癌症和骨骼疾病引起的骨缺损给公共卫生带来了巨大负担。尽管自体骨移植、同种异体骨移植或异种骨移植已在临床上使用,但修复大的骨缺损仍然是一项重大的临床挑战。骨组织工程(BTE)作为一种有前景的解决方案出现,以克服自体移植和同种异体移植的局限性。理想的骨组织工程是通过生物材料支架、骨祖细胞和成骨因子的协同整合来诱导骨再生。基于干细胞的成功的骨组织工程需要将具有成骨潜力的丰富间充质祖细胞、驱动成骨分化的合适生物因子以及对细胞友好的支架生物材料相结合。因此,骨组织工程的关键在于使用对细胞友好的生物材料作为支架来克服广泛的骨缺损。在这篇综述中,我们重点关注常用支架材料的生物相容性和对细胞友好的特性,包括无机化合物基陶瓷、天然聚合物、合成聚合物、脱细胞细胞外基质,以及在许多情况下,使用上述现有生物材料的复合支架。可以想象,生物活性材料、祖细胞、生长因子、功能化技术和仿生支架设计的组合,以及3D生物打印技术,将开启一个为特定患者应用量身定制的复杂骨组织工程支架的新时代。

相似文献

1
Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine.
Front Bioeng Biotechnol. 2020 Dec 14;8:598607. doi: 10.3389/fbioe.2020.598607. eCollection 2020.
2
3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies.
Front Bioeng Biotechnol. 2022 Apr 11;10:824156. doi: 10.3389/fbioe.2022.824156. eCollection 2022.
3
Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
Expert Opin Drug Deliv. 2013 Oct;10(10):1353-65. doi: 10.1517/17425247.2013.808183. Epub 2013 Jun 19.
6
Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine.
Stem Cell Rev Rep. 2023 Aug;19(6):1615-1634. doi: 10.1007/s12015-023-10545-x. Epub 2023 Apr 19.
7
Three-dimensional (3D) printed scaffold and material selection for bone repair.
Acta Biomater. 2019 Jan 15;84:16-33. doi: 10.1016/j.actbio.2018.11.039. Epub 2018 Nov 24.
9
3D bioactive composite scaffolds for bone tissue engineering.
Bioact Mater. 2017 Dec 1;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001. eCollection 2018 Sep.
10
Advances in Regenerative Medicine and Biomaterials.
Methods Mol Biol. 2023;2575:127-152. doi: 10.1007/978-1-0716-2716-7_7.

引用本文的文献

1
Enhanced surface properties and wettability of zirconia-hydroxyapatite-poly(acrylic acid) nanocomposites for dental applications.
J Oral Biol Craniofac Res. 2025 Sep-Oct;15(5):1097-1102. doi: 10.1016/j.jobcr.2025.07.014. Epub 2025 Jul 24.
2
Beyond natural silk: Bioengineered silk fibroin for bone regeneration.
Mater Today Bio. 2025 Jun 23;33:102014. doi: 10.1016/j.mtbio.2025.102014. eCollection 2025 Aug.
3
Multi-omics insights into bone tissue injury and healing: bridging orthopedic trauma and regenerative medicine.
Burns Trauma. 2025 May 28;13:tkaf019. doi: 10.1093/burnst/tkaf019. eCollection 2025.
4
Stem cell therapy for regenerating periodontal bony defects: A narrative review.
J Adv Periodontol Implant Dent. 2025 Mar 3;17(1):1-14. doi: 10.34172/japid.025.3749. eCollection 2025 Mar.
5
Advancements in Biomaterials for Stem Cell Differentiation.
Stem Cell Rev Rep. 2025 Apr 21. doi: 10.1007/s12015-025-10879-8.
6
Research Progress of Bone Grafting: A Comprehensive Review.
Int J Nanomedicine. 2025 Apr 15;20:4729-4757. doi: 10.2147/IJN.S510524. eCollection 2025.
8
Bone Regeneration: A Review of Current Treatment Strategies.
J Clin Med. 2025 Mar 8;14(6):1838. doi: 10.3390/jcm14061838.
10
Mesenchymal stem cells therapy for the treatment of non-union fractures: a systematic review and meta-analysis.
BMC Musculoskelet Disord. 2025 Mar 12;26(1):245. doi: 10.1186/s12891-025-08365-w.

本文引用的文献

1
Notch signaling: Its essential roles in bone and craniofacial development.
Genes Dis. 2020 Apr 11;8(1):8-24. doi: 10.1016/j.gendis.2020.04.006. eCollection 2021 Jan.
2
Decellularized bone extracellular matrix in skeletal tissue engineering.
Biochem Soc Trans. 2020 Jun 30;48(3):755-764. doi: 10.1042/BST20190079.
3
Natural and Synthetic Polymers for Bone Scaffolds Optimization.
Polymers (Basel). 2020 Apr 14;12(4):905. doi: 10.3390/polym12040905.
6
Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite.
J Mater Chem B. 2015 Feb 21;3(7):1342-1349. doi: 10.1039/c4tb01793e. Epub 2015 Jan 9.
7
Fabrication of a chitosan/bioglass three-dimensional porous scaffold for bone tissue engineering applications.
J Mater Chem B. 2014 Oct 14;2(38):6611-6618. doi: 10.1039/c4tb00940a. Epub 2014 Aug 27.
8
Influence of pre-freezing conditions of octacalcium phosphate and collagen composite for reproducible appositional bone formation.
J Biomed Mater Res B Appl Biomater. 2020 Oct;108(7):2827-2834. doi: 10.1002/jbm.b.34613. Epub 2020 Apr 2.
9
Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110698. doi: 10.1016/j.msec.2020.110698. Epub 2020 Jan 29.
10
A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells.
Adv Exp Med Biol. 2020;1288:61-85. doi: 10.1007/5584_2020_505.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验