Zhang Yongtao, Wu Di, Zhao Xia, Pakvasa Mikhail, Tucker Andrew Blake, Luo Huaxiu, Qin Kevin H, Hu Daniel A, Wang Eric J, Li Alexander J, Zhang Meng, Mao Yukun, Sabharwal Maya, He Fang, Niu Changchun, Wang Hao, Huang Linjuan, Shi Deyao, Liu Qing, Ni Na, Fu Kai, Chen Connie, Wagstaff William, Reid Russell R, Athiviraham Aravind, Ho Sherwin, Lee Michael J, Hynes Kelly, Strelzow Jason, He Tong-Chuan, El Dafrawy Mostafa
Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States.
Front Bioeng Biotechnol. 2020 Dec 14;8:598607. doi: 10.3389/fbioe.2020.598607. eCollection 2020.
Bone is a dynamic organ with high regenerative potential and provides essential biological functions in the body, such as providing body mobility and protection of internal organs, regulating hematopoietic cell homeostasis, and serving as important mineral reservoir. Bone defects, which can be caused by trauma, cancer and bone disorders, pose formidable public health burdens. Even though autologous bone grafts, allografts, or xenografts have been used clinically, repairing large bone defects remains as a significant clinical challenge. Bone tissue engineering (BTE) emerged as a promising solution to overcome the limitations of autografts and allografts. Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Successful stem cell-based BTE requires a combination of abundant mesenchymal progenitors with osteogenic potential, suitable biofactors to drive osteogenic differentiation, and cell-friendly scaffold biomaterials. Thus, the crux of BTE lies within the use of cell-friendly biomaterials as scaffolds to overcome extensive bone defects. In this review, we focus on the biocompatibility and cell-friendly features of commonly used scaffold materials, including inorganic compound-based ceramics, natural polymers, synthetic polymers, decellularized extracellular matrix, and in many cases, composite scaffolds using the above existing biomaterials. It is conceivable that combinations of bioactive materials, progenitor cells, growth factors, functionalization techniques, and biomimetic scaffold designs, along with 3D bioprinting technology, will unleash a new era of complex BTE scaffolds tailored to patient-specific applications.
骨骼是一种具有高再生潜力的动态器官,在体内发挥着重要的生物学功能,如提供身体活动能力、保护内部器官、调节造血细胞稳态以及作为重要的矿物质储存库。由创伤、癌症和骨骼疾病引起的骨缺损给公共卫生带来了巨大负担。尽管自体骨移植、同种异体骨移植或异种骨移植已在临床上使用,但修复大的骨缺损仍然是一项重大的临床挑战。骨组织工程(BTE)作为一种有前景的解决方案出现,以克服自体移植和同种异体移植的局限性。理想的骨组织工程是通过生物材料支架、骨祖细胞和成骨因子的协同整合来诱导骨再生。基于干细胞的成功的骨组织工程需要将具有成骨潜力的丰富间充质祖细胞、驱动成骨分化的合适生物因子以及对细胞友好的支架生物材料相结合。因此,骨组织工程的关键在于使用对细胞友好的生物材料作为支架来克服广泛的骨缺损。在这篇综述中,我们重点关注常用支架材料的生物相容性和对细胞友好的特性,包括无机化合物基陶瓷、天然聚合物、合成聚合物、脱细胞细胞外基质,以及在许多情况下,使用上述现有生物材料的复合支架。可以想象,生物活性材料、祖细胞、生长因子、功能化技术和仿生支架设计的组合,以及3D生物打印技术,将开启一个为特定患者应用量身定制的复杂骨组织工程支架的新时代。