Suppr超能文献

电渗流:从微流控到纳流控。

Electroosmotic flow: From microfluidics to nanofluidics.

机构信息

Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.

Department of Engineering Mechanics, Tsinghua University, Beijing, P. R. China.

出版信息

Electrophoresis. 2021 Apr;42(7-8):834-868. doi: 10.1002/elps.202000313. Epub 2021 Jan 22.

Abstract

Electroosmotic flow (EOF), a consequence of an imposed electric field onto an electrolyte solution in the tangential direction of a charged surface, has emerged as an important phenomenon in electrokinetic transport at the micro/nanoscale. Because of their ability to efficiently pump liquids in miniaturized systems without incorporating any mechanical parts, electroosmotic methods for fluid pumping have been adopted in versatile applications-from biotechnology to environmental science. To understand the electrokinetic pumping mechanism, it is crucial to identify the role of an ionically polarized layer, the so-called electrical double layer (EDL), which forms in the vicinity of a charged solid-liquid interface, as well as the characteristic length scale of the conducting media. Therefore, in this tutorial review, we summarize the development of electrical double layer models from a historical point of view to elucidate the interplay and configuration of water molecules and ions in the vicinity of a solid-liquid interface. Moreover, we discuss the physicochemical phenomena owing to the interaction of electrical double layer when the characteristic length of the conducting media is decreased from the microscale to the nanoscale. Finally, we highlight the pioneering studies and the most recent works on electro osmotic flow devoted to both theoretical and experimental aspects.

摘要

电渗流(EOF)是在带电荷表面的切向方向上施加电场对电解质溶液的一种影响,它已成为微/纳米尺度电动输运中的一个重要现象。由于它们能够在不包含任何机械部件的情况下在小型化系统中有效地泵送液体,电渗流用于泵送流体的方法已经在从生物技术到环境科学的各种应用中得到采用。为了理解电动泵送机制,必须确定离子极化层(所谓的双电层(EDL))的作用,该极化层在带电荷的固-液界面附近形成,以及导电介质的特征长度尺度。因此,在本教程综述中,我们从历史的角度总结了双电层模型的发展,以阐明水分子和离子在固-液界面附近的相互作用和构型。此外,我们讨论了由于导电介质的特征长度从微米尺度减小到纳米尺度而导致的双电层相互作用的物理化学现象。最后,我们重点介绍了在理论和实验方面都致力于电渗流的开创性研究和最新工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f02/8247933/d63d54da2bfd/ELPS-42-834-g018.jpg

相似文献

1
Electroosmotic flow: From microfluidics to nanofluidics.
Electrophoresis. 2021 Apr;42(7-8):834-868. doi: 10.1002/elps.202000313. Epub 2021 Jan 22.
4
Electrokinetic transport phenomena in nanofluidics and their applications.
Electrophoresis. 2023 Dec;44(23):1756-1773. doi: 10.1002/elps.202300115. Epub 2023 Jul 12.
6
Effect of multivalent ions on electroosmotic flow in micro- and nanochannels.
Electrophoresis. 2003 Sep;24(17):3006-17. doi: 10.1002/elps.200305561.
7
Electroosmotic flow in single PDMS nanochannels.
Nanoscale. 2016 Jun 16;8(24):12237-46. doi: 10.1039/c6nr02937j.
8
Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels.
Anal Chim Acta. 2019 Jun 20;1059:68-79. doi: 10.1016/j.aca.2019.02.008. Epub 2019 Feb 19.
9
Spreadsheet analysis of the field-driven start-up flow in a microfluidic channel.
Electrophoresis. 2021 Dec;42(23):2465-2473. doi: 10.1002/elps.202100038. Epub 2021 May 3.

引用本文的文献

1
Nanofluidic devices for single-molecule analytical chemistry.
Anal Sci. 2025 Jun 12. doi: 10.1007/s44211-025-00801-0.
4
Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications.
Biomimetics (Basel). 2025 Jan 15;10(1):56. doi: 10.3390/biomimetics10010056.
5
Microfluidic-based electrically driven particle manipulation techniques for biomedical applications.
RSC Adv. 2025 Jan 3;15(1):167-198. doi: 10.1039/d4ra05571c. eCollection 2025 Jan 2.
7
Periodic Flows in Microfluidics.
Small. 2024 Dec;20(50):e2404685. doi: 10.1002/smll.202404685. Epub 2024 Sep 9.
8
Investigation of induced electroosmotic flow in small-scale capillary electrophoresis devices: Strategies for control and reversal.
Electrophoresis. 2024 Oct;45(19-20):1764-1774. doi: 10.1002/elps.202400107. Epub 2024 Jul 25.
9
Current status and future application of electrically controlled micro/nanorobots in biomedicine.
Front Bioeng Biotechnol. 2024 Jan 19;12:1353660. doi: 10.3389/fbioe.2024.1353660. eCollection 2024.
10
Tuning and Coupling Irreversible Electroosmotic Water Flow in Ionic Diodes: Methylation of an Intrinsically Microporous Polyamine (PIM-EA-TB).
ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42369-42377. doi: 10.1021/acsami.3c10220. Epub 2023 Aug 28.

本文引用的文献

1
Process-based modeling of electrokinetic-enhanced bioremediation of chlorinated ethenes.
J Hazard Mater. 2020 Oct 5;397:122787. doi: 10.1016/j.jhazmat.2020.122787. Epub 2020 Apr 21.
2
Temperature effects on electrical double layer at solid-aqueous solution interface.
Electrophoresis. 2020 Jun;41(12):1067-1072. doi: 10.1002/elps.201900354. Epub 2020 May 11.
3
Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions.
Langmuir. 2020 Apr 28;36(16):4250-4260. doi: 10.1021/acs.langmuir.0c00024. Epub 2020 Apr 15.
4
Charge interactions, reaction kinetics and dimensionality effects on electrokinetic remediation: A model-based analysis.
J Contam Hydrol. 2020 Feb;229:103567. doi: 10.1016/j.jconhyd.2019.103567. Epub 2019 Nov 9.
5
Bacterial hopping and trapping in porous media.
Nat Commun. 2019 May 6;10(1):2075. doi: 10.1038/s41467-019-10115-1.
6
Theory of Transport-Induced-Charge Electroosmotic Pumping toward Alternating Current Resistive Pulse Sensing.
ACS Sens. 2018 Nov 26;3(11):2320-2326. doi: 10.1021/acssensors.8b00635. Epub 2018 Nov 5.
7
Flexibility of inactive electrokinetic layer at charged solid-liquid interface in response to bulk ion concentration.
J Colloid Interface Sci. 2019 Jan 15;534:195-204. doi: 10.1016/j.jcis.2018.09.010. Epub 2018 Sep 6.
8
Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.
ACS Nano. 2017 Nov 28;11(11):11669-11677. doi: 10.1021/acsnano.7b06767. Epub 2017 Nov 7.
9
The Discovery of Electrokinetic Phenomena: Setting the Record Straight.
Angew Chem Int Ed Engl. 2017 Jul 10;56(29):8338-8340. doi: 10.1002/anie.201608536. Epub 2016 Nov 30.
10
Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling.
J Colloid Interface Sci. 2017 Jan 15;486:219-231. doi: 10.1016/j.jcis.2016.09.057. Epub 2016 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验