Suppr超能文献

通过微通道中基于血液的杰弗里混合纳米流体对金-二氧化硅纳米载体进行磁化电渗药物递送:卡普托·法布里齐奥导数建模

Magnetized electroosmotic drug delivery of Au-SiO2 nanocarriers through blood-based jeffrey hybrid nanofluid in a microchannel: Caputo Fabrizio derivative modeling.

作者信息

K M Pavithra, B N Hanumagowda, Varma S V K

机构信息

Department of Mathematics, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.

出版信息

Heliyon. 2024 Aug 27;10(17):e36891. doi: 10.1016/j.heliyon.2024.e36891. eCollection 2024 Sep 15.

Abstract

Fractional calculus is emerging as a promising field to overcome the intricacies inherent in biological systems that prevent conventional techniques from producing optimal results. The present research emphasizes the impact of thermal radiation, chemical reactions, and radiation absorption on an electroosmotic magnetohydrodynamic (MHD) blood-based Jeffrey hybrid nanofluid flow in a microchannel, employing the novel Caputo-Fabrizio fractional calculus approach. This study is carried out on two models: ramped and constant boundary conditions with distinct zeta potentials. The graphs are drawn with the help of MATLAB software. Our results demonstrate that the fractional order significantly influences the drug dispersion, and for (fractional parameter), the blood flow becomes wavy. The presence of nanoparticles improves drug transport, hence enhancing the drug concentration in proximity to the target site. For , the Jeffrey nanofluid with ramped conditions shows the highest velocity enhancement in the case of pressure-driven, natural convective flow. Electroosmotic force facilitates fluid flow and enhances drug transport efficiency. For the blood velocity decreases in the vicinity of the plate y = 0, and reverse behavior is observed as it passes which can aid in effective drug delivery. At , the heat transfer rate increases by a maximum of 199.18 % while skin friction decreases to 3.07 %, aiding in maintaining medications at the desired temperature and improving drug delivery efficiency. The temperature and velocity of the blood hybrid nanofluid are maximized under ramping wall settings compared to constant wall conditions.

摘要

分数阶微积分正成为一个有前景的领域,以克服生物系统中固有的复杂性,这些复杂性阻碍了传统技术产生最佳结果。本研究采用新颖的卡普托 - 法布里齐奥分数阶微积分方法,强调了热辐射、化学反应和辐射吸收对微通道中基于电渗磁流体动力学(MHD)血液的杰弗里混合纳米流体流动的影响。本研究在两种模型上进行:具有不同zeta电位的斜坡边界条件和恒定边界条件。借助MATLAB软件绘制图表。我们的结果表明,分数阶对药物扩散有显著影响,并且对于(分数参数),血流会变成波浪状。纳米颗粒的存在改善了药物传输,从而提高了靶部位附近的药物浓度。对于,在压力驱动的自然对流流动情况下,具有斜坡条件的杰弗里纳米流体显示出最高的速度增强。电渗力促进流体流动并提高药物传输效率。对于,在平板y = 0附近血流速度降低,并且当它经过时观察到相反的行为,这有助于有效给药。在时,传热速率最大增加199.18%,而皮肤摩擦力降低到3.07%有助于将药物维持在所需温度并提高药物递送效率。与恒定壁面条件相比,在斜坡壁面设置下血液混合纳米流体的温度和速度最大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3182/11639471/0e78f5ca7070/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验