Suppr超能文献

在机械化学诱导的酸催化甲壳素水解选择性的电子结构起源。

On the Electronic Structure Origin of Mechanochemically Induced Selectivity in Acid-Catalyzed Chitin Hydrolysis.

机构信息

Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-Ku, Sapporo 060-0810, Japan.

Institute for Catalysis, Hokkaido University, N21W10, Kita-Ku, Sapporo 001-0021, Japan.

出版信息

J Phys Chem A. 2021 Jan 14;125(1):187-197. doi: 10.1021/acs.jpca.0c09030. Epub 2020 Dec 31.

Abstract

Recently, mechanical ball milling was applied to chitin depolymerization. The mechanical activation afforded higher selectivity toward glycosidic bond cleavage over amide bond breakage. Hence, the bioactive -acetylglucosamine (GlcNAc) monomer was preferentially produced over glucosamine. In this regard, the force-dependent mechanochemical activation-deactivation process in the relaxed and pulled GlcNAc dimer undergoing deacetylation and depolymerization reactions was studied. For the relaxed case, the activation energies of the rate-determining steps (RDS) proved that the two reactions could occur simultaneously. Mechanical forces associated with ball milling were approximated with linear pulling and were introduced explicitly in the RDS of both reactions through force-modified potential energy surface (FMPES) formalism. In general, as the applied pulling force increases, the activation energy of the RDS of deacetylation shows no meaningful change, while that of depolymerization decreases. This result is consistent with the selectivity exhibited in the experiment. Energy and structural analyses for the depolymerization showed that the activation can be attributed to a significant change in the glycosidic dihedral at the reactant state. A lone pair of the neighboring pyranose ring O adopts a -periplanar conformation relative to the glycosidic bond. This promotes electron donation to the σ*-orbital of the glycosidic bond, leading to activation. Consequently, the Brønsted-Lowry basicity of the glycosidic oxygen also increases, which can facilitate acid catalysis.

摘要

最近,机械球磨被应用于壳聚糖的解聚。机械活化使糖苷键断裂相对于酰胺键断裂具有更高的选择性。因此,相对于葡萄糖胺,更优先产生生物活性的-乙酰葡萄糖胺(GlcNAc)单体。在这方面,研究了去乙酰化和解聚反应中松弛和拉伸的 GlcNAc 二聚体中力依赖性机械化学活化-失活过程。对于松弛情况,速率决定步骤(RDS)的活化能证明两个反应可以同时发生。与球磨相关的机械力通过线性拉伸近似,并通过力修饰势能面(FMPES)形式明确引入到两个反应的 RDS 中。一般来说,随着施加的拉伸力增加,去乙酰化的 RDS 的活化能没有明显变化,而解聚的活化能则降低。这一结果与实验中表现出的选择性一致。解聚的能量和结构分析表明,活化可以归因于反应物状态下糖苷二面角的显著变化。相邻吡喃糖环 O 的孤对电子采用相对于糖苷键的 - 近乎平面构象。这促进了电子向糖苷键的 σ*-轨道的捐赠,从而导致活化。因此,糖苷氧的布朗斯特-劳里碱性也增加,这可以促进酸催化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验