Suppr超能文献

基于深度学习的眼底自发荧光图像视网膜萎缩分类。

Deep learning-based classification of retinal atrophy using fundus autofluorescence imaging.

机构信息

Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, Créteil, France; Laboratory of Images, Signals and Intelligent Systems (LISSI), (EA N° 3956), University Paris-Est, Créteil, France.

Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, Créteil, France.

出版信息

Comput Biol Med. 2021 Mar;130:104198. doi: 10.1016/j.compbiomed.2020.104198. Epub 2020 Dec 28.

Abstract

PURPOSE

To automatically classify retinal atrophy according to its etiology, using fundus autofluorescence (FAF) images, using a deep learning model.

METHODS

In this study, FAF images of patients with advanced dry age-related macular degeneration (AMD), also called geographic atrophy (GA), and genetically confirmed inherited retinal diseases (IRDs) in late atrophic stages [Stargardt disease (STGD1) and Pseudo-Stargardt Pattern Dystrophy (PSPD)] were included. The FAF images were used to train a multi-layer deep convolutional neural network (CNN) to differentiate on FAF between atrophy in the context of AMD (GA) and atrophy secondary to IRDs. Three-hundred fourteen FAF images were included, of which 110 images were of GA eyes and 204 were eyes with genetically confirmed STGD1 or PSPD. In the first approach, the CNN was trained and validated with 251 FAF images. Established augmentation techniques were used and an Adam optimizer was used for training. For the subsequent testing, the built classifiers were then tested with 63 untrained FAF images. The visualization method was integrated gradient visualization. In the second approach, 10-fold cross-validation was used to determine the model's performance.

RESULTS

In the first approach, the best performance of the model was obtained using 10 epochs, with an accuracy of 0.92 and an area under the curve for Receiver Operating Characteristic (AUC-ROC) of 0.981. Mean accuracy was 87.30 ± 2.96. In the second approach, a mean accuracy of 0.79 ± 0.06 was obtained.

CONCLUSION

This study describes the use of a deep learning-based algorithm to automatically classify atrophy on FAF imaging according to its etiology. Accurate differential diagnosis between GA and late-onset IRDs masquerading as GA on FAF can be performed with good accuracy and AUC-ROC values.

摘要

目的

使用眼底自发荧光(FAF)图像,通过深度学习模型,根据病因自动对视网膜萎缩进行分类。

方法

本研究纳入了晚期干性年龄相关性黄斑变性(AMD),又称地图状萎缩(GA),以及遗传证实的晚期萎缩性遗传性视网膜疾病(IRDs)[斯塔加特病(STGD1)和假性斯塔加特型营养不良(PSPD)]患者的 FAF 图像。使用 FAF 图像对多层深度卷积神经网络(CNN)进行训练,以区分 AMD(GA)背景下的萎缩和 IRD 继发的萎缩。共纳入 314 张 FAF 图像,其中 110 张为 GA 眼,204 张为经基因证实的 STGD1 或 PSPD 眼。在第一种方法中,使用 251 张 FAF 图像对 CNN 进行训练和验证。使用了已建立的增强技术,并使用 Adam 优化器进行训练。在随后的测试中,然后使用 63 张未训练的 FAF 图像对构建的分类器进行测试。可视化方法是集成梯度可视化。在第二种方法中,使用 10 折交叉验证来确定模型的性能。

结果

在第一种方法中,模型的最佳性能是在使用 10 个时期时获得的,准确率为 0.92,接收者操作特征曲线下的面积(AUC-ROC)为 0.981。平均准确率为 87.30±2.96。在第二种方法中,平均准确率为 0.79±0.06。

结论

本研究描述了使用基于深度学习的算法根据病因在 FAF 成像上自动对萎缩进行分类。可以使用良好的准确性和 AUC-ROC 值对 FAF 上表现为 GA 的 GA 和迟发性 IRD 进行准确的鉴别诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验