Suppr超能文献

利用深度学习从多模态成像预测地理萎缩面积和生长速率

Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging.

作者信息

Anegondi Neha, Gao Simon S, Steffen Verena, Spaide Richard F, Sadda SriniVas R, Holz Frank G, Rabe Christina, Honigberg Lee, Newton Elizabeth M, Cluceru Julia, Kawczynski Michael G, Bengtsson Thomas, Ferrara Daniela, Yang Qi

机构信息

Clinical Imaging Group, Genentech, Inc., South San Francisco, California; Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California.

Roche Ophthalmology Personalized Healthcare, Genentech, Inc., South San Francisco, California; Biostatistics, Genentech, Inc., South San Francisco, California.

出版信息

Ophthalmol Retina. 2023 Mar;7(3):243-252. doi: 10.1016/j.oret.2022.08.018. Epub 2022 Aug 28.

Abstract

OBJECTIVE

To develop deep learning models for annualized geographic atrophy (GA) growth rate prediction using fundus autofluorescence (FAF) images and spectral-domain OCT volumes from baseline visits, which can be used for prognostic covariate adjustment to increase power of clinical trials.

DESIGN

This retrospective analysis estimated GA growth rate as the slope of a linear fit on all available measurements of lesion area over a 2-year period. Three multitask deep learning models-FAF-only, OCT-only, and multimodal (FAF and OCT)-were developed to predict concurrent GA area and annualized growth rate.

PARTICIPANTS

Patients were from prospective and observational lampalizumab clinical trials.

METHODS

The 3 models were trained on the development data set, tested on the holdout set, and further evaluated on the independent test sets. Baseline FAF images and OCT volumes from study eyes of patients with bilateral GA (NCT02247479; NCT02247531; and NCT02479386) were split into development (1279 patients/eyes) and holdout (443 patients/eyes) sets. Baseline FAF images from study eyes of NCT01229215 (106 patients/eyes) and NCT02399072 (169 patients/eyes) were used as independent test sets.

MAIN OUTCOME MEASURES

Model performance was evaluated using squared Pearson correlation coefficient (r) between observed and predicted lesion areas/growth rates. Confidence intervals were calculated by bootstrap resampling (B = 10 000).

RESULTS

On the holdout data set, r (95% confidence interval) of the FAF-only, OCT-only, and multimodal models for GA lesion area prediction was 0.96 (0.95-0.97), 0.91 (0.87-0.95), and 0.94 (0.92-0.96), respectively, and for GA growth rate prediction was 0.48 (0.41-0.55), 0.36 (0.29-0.43), and 0.47 (0.40-0.54), respectively. On the 2 independent test sets, r of the FAF-only model for GA lesion area was 0.98 (0.97-0.99) and 0.95 (0.93-0.96), and for GA growth rate was 0.65 (0.52-0.75) and 0.47 (0.34-0.60).

CONCLUSIONS

We show the feasibility of using baseline FAF images and OCT volumes to predict individual GA area and growth rates using a multitask deep learning approach. The deep learning-based growth rate predictions could be used for covariate adjustment to increase power of clinical trials.

FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.

摘要

目的

利用来自基线访视的眼底自发荧光(FAF)图像和光谱域光学相干断层扫描(OCT)容积,开发用于预测年化地理萎缩(GA)增长率的深度学习模型,该模型可用于预后协变量调整以提高临床试验的效能。

设计

这项回顾性分析将GA增长率估计为两年内病变面积所有可用测量值的线性拟合斜率。开发了三个多任务深度学习模型——仅FAF模型、仅OCT模型和多模态(FAF和OCT)模型,以预测同期GA面积和年化增长率。

参与者

患者来自前瞻性观察性兰帕利单抗临床试验。

方法

这三个模型在开发数据集上进行训练,在保留集上进行测试,并在独立测试集上进一步评估。将双侧GA患者(NCT02247479;NCT02247531;和NCT02479386)研究眼的基线FAF图像和OCT容积分为开发集(1279例患者/眼)和保留集(443例患者/眼)。将NCT01229215(106例患者/眼)和NCT02399072(169例患者/眼)研究眼的基线FAF图像用作独立测试集。

主要观察指标

使用观察到的和预测的病变面积/增长率之间的平方皮尔逊相关系数(r)评估模型性能。通过自助重采样计算置信区间(B = 10000)。

结果

在保留数据集上,仅FAF模型、仅OCT模型和多模态模型预测GA病变面积的r(95%置信区间)分别为0.96(0.95 - 0.97)、0.91(0.87 - 0.95)和0.94(0.92 - 0.96),预测GA增长率的r分别为0.48(0.41 - 0.55)、0.36(0.29 - 0.43)和0.47(0.40 - 0.54)。在两个独立测试集上,仅FAF模型预测GA病变面积的r分别为0.98(0.97 - 0.99)和0.95(0.93 - 0.96),预测GA增长率的r分别为0.65(0.52 - 0.75)和0.47(0.34 - 0.60)。

结论

我们展示了使用基线FAF图像和OCT容积,通过多任务深度学习方法预测个体GA面积和增长率的可行性。基于深度学习的增长率预测可用于协变量调整以提高临床试验的效能。

财务披露

专有或商业披露信息可在参考文献之后找到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验