Suppr超能文献

多运营商 LoRaWAN 部署中的联合扩频因子和信道分配。

Joint Spreading Factor and Channel Assignment in Multi-Operator LoRaWAN Deployments.

机构信息

Institut Mines-Télécom, Université Paris-Saclay, UVSQ, 78035 Versailles, France.

Faculty of Engineering ESIB, Université Saint-Joseph de Beyrouth, ESIB, CIMTI, Beirut, Lebanon.

出版信息

Sensors (Basel). 2020 Dec 29;21(1):162. doi: 10.3390/s21010162.

Abstract

LoRaWAN is a popular internet of things (IoT) solution over the unlicensed radio band. It sustains low-cost, durable, and long range IoT wireless communications. Nonetheless, with over 24 billion connected IoT devices being expected by the end of the year, and over 50 billion by 2025, the concurrent and legacy approaches to spreading factor and channel assignment in LoRaWAN networks can no longer keep up. This is exacerbated with the growing densification of IoT device deployments and, with the increasing requirements for better throughput and packet delivery ratios. In this paper, we propose a proportional fair-based joint optimal formulation for spreading factor and channel assignment in multi-operator LoRaWAN deployments. The objective of this problem is to maximize the total sum of the logarithmic normalized throughput. We split the problem into two subproblems, and propose a game theoretic approach to solving them. We prove that our games converge towards a pure Nash equilibrium and, afterwards, solve the optimization problems using both semi-distributed and completely distributed algorithms. Via simulations, we show that our algorithms greatly improve the total normalized throughput for LoRaWAN as well as the packet success rate, in comparison to the legacy approaches.

摘要

LoRaWAN 是一种广受欢迎的物联网 (IoT) 解决方案,可在未经许可的无线电频段上运行。它支持低成本、耐用且远程的物联网无线通信。尽管如此,预计到今年年底将有超过 240 亿个连接的物联网设备,到 2025 年将达到 500 多亿个,LoRaWAN 网络中传播因子和信道分配的传统方法已经无法满足需求。随着物联网设备部署密度的不断增加,以及对更高吞吐量和数据包投递率的要求不断提高,这种情况更加严重。在本文中,我们提出了一种基于比例公平的多运营商 LoRaWAN 部署中传播因子和信道分配的联合最优公式。该问题的目标是最大化对数归一化吞吐量的总和。我们将问题分为两个子问题,并提出了一种博弈论方法来解决它们。我们证明了我们的博弈会收敛到纯纳什均衡,然后使用半分布式和完全分布式算法来解决优化问题。通过仿真,我们表明与传统方法相比,我们的算法大大提高了 LoRaWAN 的总归一化吞吐量和数据包成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaa5/7794734/42822ac5469a/sensors-21-00162-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验