Suppr超能文献

用于递送微小RNA的聚合物纳米载体

Polymer nanocarriers for MicroRNA delivery.

作者信息

Kapadia Chintan H, Luo Benjamin, Dang Megan N, Irvin-Choy N'Dea, Valcourt Danielle M, Day Emily S

机构信息

Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716.

Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716.

出版信息

J Appl Polym Sci. 2020 Jul 5;137(25). doi: 10.1002/app.48651. Epub 2019 Nov 12.

Abstract

Abnormal expression of microRNAs (miRNAs), which are highlyconserved noncoding RNAs that regulate the expression of various genes post transcriptionally to control cellular functions, has been associated with the development of many diseases. In some cases, disease-promoting miRNAs are upregulated, while in other instances disease-suppressive miRNAs are downregulated. To alleviate this imbalanced miRNA expression, either antagomiRs or miRNA mimics can be delivered to cells to inhibit or promote miRNA expression, respectively. Unfortunately, the clinical translation of bare antagomiRs and miRNA mimics has been challenging because nucleic acids are susceptible to nuclease degradation, display unfavorable pharmacokinetics, and cannot passively enter cells. This review emphasizes the challenges associated with miRNA mimic delivery and then discusses the design and implementation of polymer nanocarriers to overcome these challenges. Preclinical efforts are summarized, and a forward-looking perspective on the future clinical translation of polymer nanomaterials as miRNA delivery vehicles is provided.

摘要

微小RNA(miRNA)的异常表达与多种疾病的发生发展相关。miRNA是高度保守的非编码RNA,可在转录后调控各种基因的表达以控制细胞功能。在某些情况下,促疾病的miRNA会上调,而在其他情况下,抑疾病的miRNA会下调。为了缓解这种miRNA表达失衡的情况,可以分别将抗miR或miRNA模拟物导入细胞以抑制或促进miRNA表达。不幸的是,单纯的抗miR和miRNA模拟物的临床转化一直具有挑战性,因为核酸易受核酸酶降解,具有不良的药代动力学,且不能被动进入细胞。本文综述强调了与miRNA模拟物递送相关的挑战,然后讨论了聚合物纳米载体的设计与应用以克服这些挑战。总结了临床前的研究工作,并对聚合物纳米材料作为miRNA递送载体的未来临床转化提供了前瞻性展望。

相似文献

1
Polymer nanocarriers for MicroRNA delivery.
J Appl Polym Sci. 2020 Jul 5;137(25). doi: 10.1002/app.48651. Epub 2019 Nov 12.
2
Delivery of therapeutic miRNA using polymer-based formulation.
Drug Deliv Transl Res. 2019 Dec;9(6):1043-1056. doi: 10.1007/s13346-019-00645-y.
3
Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges.
Int J Mol Sci. 2023 Aug 28;24(17):13340. doi: 10.3390/ijms241713340.
4
Progress in microRNA delivery.
J Control Release. 2013 Dec 28;172(3):962-74. doi: 10.1016/j.jconrel.2013.09.015. Epub 2013 Sep 25.
5
Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo.
ACS Nano. 2019 Jun 25;13(6):6491-6505. doi: 10.1021/acsnano.8b09679. Epub 2019 Jun 12.
6
Exploiting Nanotechnology for the Development of MicroRNA-Based Cancer Therapeutics.
J Biomed Nanotechnol. 2016 Jan;12(1):28-42. doi: 10.1166/jbn.2016.2172.
7
Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics.
Expert Opin Drug Deliv. 2013 Sep;10(9):1259-73. doi: 10.1517/17425247.2013.798640. Epub 2013 Jul 5.
9
Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives.
Nanomedicine. 2021 Jan;31:102303. doi: 10.1016/j.nano.2020.102303. Epub 2020 Sep 24.
10
Computational design of artificial RNA molecules for gene regulation.
Methods Mol Biol. 2015;1269:393-412. doi: 10.1007/978-1-4939-2291-8_25.

引用本文的文献

1
MicroRNA-Based Delivery Systems for Chronic Neuropathic Pain Treatment in Dorsal Root Ganglion.
Pharmaceutics. 2025 Jul 18;17(7):930. doi: 10.3390/pharmaceutics17070930.
2
Transmucosal Delivery of miR-30c-5p by Chitosan Nanoparticles for Oral Squamous Cell Carcinoma.
Int J Nanomedicine. 2025 Jul 19;20:9179-9194. doi: 10.2147/IJN.S524558. eCollection 2025.
3
Advances in nucleic acid delivery strategies for diabetic wound therapy.
J Clin Transl Endocrinol. 2024 Aug 30;37:100366. doi: 10.1016/j.jcte.2024.100366. eCollection 2024 Sep.
4
Crosstalk between MiRNAs/lncRNAs and PI3K/AKT signaling pathway in diabetes mellitus: Mechanistic and therapeutic perspectives.
Noncoding RNA Res. 2024 Jan 14;9(2):486-507. doi: 10.1016/j.ncrna.2024.01.005. eCollection 2024 Jun.
5
Exploring the Therapeutic Significance of microRNAs and lncRNAs in Kidney Diseases.
Genes (Basel). 2024 Jan 19;15(1):123. doi: 10.3390/genes15010123.
7
Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer.
Heliyon. 2023 Nov 14;9(11):e22080. doi: 10.1016/j.heliyon.2023.e22080. eCollection 2023 Nov.
8
Cationic Calix[4]arene Vectors to Efficiently Deliver AntimiRNA Peptide Nucleic Acids (PNAs) and miRNA Mimics.
Pharmaceutics. 2023 Aug 10;15(8):2121. doi: 10.3390/pharmaceutics15082121.
9
CRISPR/Cas9 Genome Editing for Tissue-Specific In Vivo Targeting: Nanomaterials and Translational Perspective.
Adv Sci (Weinh). 2023 Jul;10(19):e2207512. doi: 10.1002/advs.202207512. Epub 2023 May 11.
10
Delivery of AntagomiR-7 through polymer nanoparticles for assisting B Cell to alleviate systemic lupus erythematosus.
Front Bioeng Biotechnol. 2023 Apr 19;11:1180302. doi: 10.3389/fbioe.2023.1180302. eCollection 2023.

本文引用的文献

1
Advances in targeted nanotherapeutics: From bioconjugation to biomimicry.
Nano Res. 2018 Oct;11(10):4999-5016. doi: 10.1007/s12274-018-2083-z. Epub 2018 May 17.
2
Delivery of therapeutic miRNA using polymer-based formulation.
Drug Deliv Transl Res. 2019 Dec;9(6):1043-1056. doi: 10.1007/s13346-019-00645-y.
3
Cytoplasmic delivery of functional siRNA using pH-Responsive nanoscale hydrogels.
Int J Pharm. 2019 May 1;562:249-257. doi: 10.1016/j.ijpharm.2019.03.013. Epub 2019 Mar 8.
4
An estimate of the total number of true human miRNAs.
Nucleic Acids Res. 2019 Apr 23;47(7):3353-3364. doi: 10.1093/nar/gkz097.
5
Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis.
Nanomedicine. 2019 Apr;17:188-197. doi: 10.1016/j.nano.2019.01.007. Epub 2019 Feb 2.
6
MicroRNA Delivery with Bioreducible Polyethylenimine as a Non-Viral Vector for Breast Cancer Gene Therapy.
Macromol Biosci. 2019 Apr;19(4):e1800445. doi: 10.1002/mabi.201800445. Epub 2019 Jan 6.
8
Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a.
Cell Mol Bioeng. 2018 Oct;11(5):383-396. doi: 10.1007/s12195-018-0535-x. Epub 2018 Jun 6.
9
MicroRNA-145-loaded poly(lactic-co-glycolic acid) nanoparticles attenuate venous intimal hyperplasia in a rabbit model.
J Thorac Cardiovasc Surg. 2019 Jun;157(6):2242-2251. doi: 10.1016/j.jtcvs.2018.08.115. Epub 2018 Oct 6.
10
Polyethylenimine-Spherical Nucleic Acid Nanoparticles against Gli1 Reduce the Chemoresistance and Stemness of Glioblastoma Cells.
Mol Pharm. 2018 Nov 5;15(11):5135-5145. doi: 10.1021/acs.molpharmaceut.8b00707. Epub 2018 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验