Suppr超能文献

一种提升生成对抗网络性能的简单而有效的方法。

Simple Yet Effective Way for Improving the Performance of GAN.

作者信息

Yeo Yoon-Jae, Shin Yong-Goo, Park Seung, Ko Sung-Jea

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1811-1818. doi: 10.1109/TNNLS.2020.3045000. Epub 2022 Apr 4.

Abstract

In adversarial learning, the discriminator often fails to guide the generator successfully since it distinguishes between real and generated images using silly or nonrobust features. To alleviate this problem, this brief presents a simple but effective way that improves the performance of the generative adversarial network (GAN) without imposing the training overhead or modifying the network architectures of existing methods. The proposed method employs a novel cascading rejection (CR) module for discriminator, which extracts multiple nonoverlapped features in an iterative manner using the vector rejection operation. Since the extracted diverse features prevent the discriminator from concentrating on nonmeaningful features, the discriminator can guide the generator effectively to produce images that are more similar to the real images. In addition, since the proposed CR module requires only a few simple vector operations, it can be readily applied to existing frameworks with marginal training overheads. Quantitative evaluations on various data sets, including CIFAR-10, CelebA, CelebA-HQ, LSUN, and tiny-ImageNet, confirm that the proposed method significantly improves the performance of GAN and conditional GAN in terms of the Frechet inception distance (FID), indicating the diversity and visual appearance of the generated images.

摘要

在对抗学习中,鉴别器常常无法成功地引导生成器,因为它使用的是愚蠢或不可靠的特征来区分真实图像和生成图像。为了缓解这个问题,本简报提出了一种简单但有效的方法,该方法在不增加训练开销或修改现有方法的网络架构的情况下提高生成对抗网络(GAN)的性能。所提出的方法为鉴别器采用了一种新颖的级联拒绝(CR)模块,该模块使用向量拒绝操作以迭代方式提取多个不重叠的特征。由于提取的多样化特征可防止鉴别器专注于无意义的特征,因此鉴别器可以有效地引导生成器生成与真实图像更相似的图像。此外,由于所提出的CR模块仅需要一些简单的向量操作,因此它可以很容易地应用于现有框架,且训练开销很小。对包括CIFAR-10、CelebA、CelebA-HQ、LSUN和tiny-ImageNet在内的各种数据集进行的定量评估证实,所提出的方法在弗雷歇因距离(FID)方面显著提高了GAN和条件GAN的性能,这表明了生成图像的多样性和视觉外观。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验