Suppr超能文献

最小k阶与雷尼生成对抗网络

Least kth-Order and Rényi Generative Adversarial Networks.

作者信息

Bhatia Himesh, Paul William, Alajaji Fady, Gharesifard Bahman, Burlina Philippe

机构信息

Department of Mathematics and Statistics, Queens University, ON K7L 3N6, Canada

Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, U.S.A.

出版信息

Neural Comput. 2021 Aug 19;33(9):2473-2510. doi: 10.1162/neco_a_01416.

Abstract

We investigate the use of parameterized families of information-theoretic measures to generalize the loss functions of generative adversarial networks (GANs) with the objective of improving performance. A new generator loss function, least kth-order GAN (LkGAN), is introduced, generalizing the least squares GANs (LSGANs) by using a kth-order absolute error distortion measure with k≥1 (which recovers the LSGAN loss function when k=2). It is shown that minimizing this generalized loss function under an (unconstrained) optimal discriminator is equivalent to minimizing the kth-order Pearson-Vajda divergence. Another novel GAN generator loss function is next proposed in terms of Rényi cross-entropy functionals with order α>0, α≠1. It is demonstrated that this Rényi-centric generalized loss function, which provably reduces to the original GAN loss function as α→1, preserves the equilibrium point satisfied by the original GAN based on the Jensen-Rényi divergence, a natural extension of the Jensen-Shannon divergence. Experimental results indicate that the proposed loss functions, applied to the MNIST and CelebA data sets, under both DCGAN and StyleGAN architectures, confer performance benefits by virtue of the extra degrees of freedom provided by the parameters k and α, respectively. More specifically, experiments show improvements with regard to the quality of the generated images as measured by the Fréchet inception distance score and training stability. While it was applied to GANs in this study, the proposed approach is generic and can be used in other applications of information theory to deep learning, for example, the issues of fairness or privacy in artificial intelligence.

摘要

我们研究使用参数化的信息论度量族来推广生成对抗网络(GAN)的损失函数,目的是提高性能。引入了一种新的生成器损失函数,即最小k阶GAN(LkGAN),它通过使用k≥1的k阶绝对误差失真度量来推广最小二乘GAN(LSGAN)(当k = 2时可恢复LSGAN损失函数)。结果表明,在(无约束的)最优判别器下最小化这个广义损失函数等同于最小化k阶Pearson-Vajda散度。接下来,根据阶数α>0且α≠1的Rényi交叉熵泛函提出了另一种新颖的GAN生成器损失函数。结果表明,这种以Rényi为中心的广义损失函数在α→1时可证明地简化为原始GAN损失函数,基于Jensen-Rényi散度(Jensen-Shannon散度的自然扩展)保留了原始GAN满足的平衡点。实验结果表明,所提出的损失函数应用于MNIST和CelebA数据集,在DCGAN和StyleGAN架构下,分别凭借参数k和α提供的额外自由度带来了性能提升。更具体地说,实验表明,以Fréchet初始距离分数衡量的生成图像质量和训练稳定性都有所提高。虽然本研究将其应用于GAN,但所提出的方法具有通用性,可用于信息论在深度学习中的其他应用,例如人工智能中的公平性或隐私问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验