Suppr超能文献

基于MRI的影像组学对透明细胞肾细胞癌的分期、大小、分级及坏死评分进行术前预测。

Preoperative prediction of the stage, size, grade, and necrosis score in clear cell renal cell carcinoma using MRI-based radiomics.

作者信息

Choi Ji Whae, Hu Rong, Zhao Yijun, Purkayastha Subhanik, Wu Jing, McGirr Aidan J, Stavropoulos S William, Silva Alvin C, Soulen Michael C, Palmer Matthew B, Zhang Paul J L, Zhu Chengzhang, Ahn Sun Ho, Bai Harrison X

机构信息

Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA.

Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.

出版信息

Abdom Radiol (NY). 2021 Jun;46(6):2656-2664. doi: 10.1007/s00261-020-02876-x. Epub 2021 Jan 2.

Abstract

PURPOSE

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Currently, there is a lack of noninvasive methods to stratify ccRCC prognosis prior to any invasive therapies. The purpose of this study was to preoperatively predict the tumor stage, size, grade, and necrosis (SSIGN) score of ccRCC using MRI-based radiomics.

METHODS

A multicenter cohort of 364 histopathologically confirmed ccRCC patients (272 low [< 4] and 92 high [≥ 4] SSIGN score) with preoperative T2-weighted and T1-contrast-enhanced MRI were retrospectively identified and divided into training (254 patients) and testing sets (110 patients). The performance of a manually optimized radiomics model was assessed by measuring accuracy, sensitivity, specificity, area under receiver operating characteristic curve (AUROC), and area under precision-recall curve (AUPRC) on an independent test set, which was not included in model training. Lastly, its performance was compared to that of a machine learning pipeline, Tree-Based Pipeline Optimization Tool (TPOT).

RESULTS

The manually optimized radiomics model using Random Forest classification and Analysis of Variance feature selection methods achieved an AUROC of 0.89, AUPRC of 0.81, accuracy of 0.89 (95% CI 0.816-0.937), specificity of 0.95 (95% CI 0.875-0.984), and sensitivity of 0.72 (95% CI 0.537-0.852) on the test set. The TPOT using Extra Trees Classifier achieved an AUROC of 0.94, AUPRC of 0.83, accuracy of 0.89 (95% CI 0.816-0.937), specificity of 0.95 (95% CI 0.875-0.984), and sensitivity of 0.72 (95% CI 0.537-0.852) on the test set.

CONCLUSION

Preoperative MR radiomics can accurately predict SSIGN score of ccRCC, suggesting its promise as a prognostic tool that can be used in conjunction with diagnostic markers.

摘要

目的

透明细胞肾细胞癌(ccRCC)是肾细胞癌最常见的亚型。目前,缺乏在任何侵入性治疗之前对ccRCC预后进行分层的非侵入性方法。本研究的目的是使用基于MRI的放射组学术前预测ccRCC的肿瘤分期、大小、分级和坏死(SSIGN)评分。

方法

回顾性纳入364例经组织病理学确诊的ccRCC患者的多中心队列(272例低[<4]和92例高[≥4]SSIGN评分),这些患者术前行T2加权和T1增强MRI检查,并分为训练组(254例患者)和测试组(110例患者)。通过在独立测试集上测量准确性、敏感性、特异性、受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)来评估手动优化的放射组学模型的性能,该测试集未包含在模型训练中。最后,将其性能与机器学习管道基于树的管道优化工具(TPOT)的性能进行比较。

结果

使用随机森林分类和方差分析特征选择方法的手动优化放射组学模型在测试集上的AUROC为0.89,AUPRC为0.81,准确性为0.89(95%CI 0.816-0.937),特异性为0.95(95%CI 0.875-0.984),敏感性为0.72(95%CI 0.537-0.852)。使用极端随机树分类器的TPOT在测试集上的AUROC为0.94,AUPRC为0.83,准确性为0.89(95%CI 0.816-0.937),特异性为0.95(95%CI 0.875-0.984),敏感性为0.72(95%CI 0.537-0.

相似文献

1
Preoperative prediction of the stage, size, grade, and necrosis score in clear cell renal cell carcinoma using MRI-based radiomics.
Abdom Radiol (NY). 2021 Jun;46(6):2656-2664. doi: 10.1007/s00261-020-02876-x. Epub 2021 Jan 2.
5
Development and validation of a CT-based nomogram for preoperative prediction of clear cell renal cell carcinoma grades.
Eur Radiol. 2021 Aug;31(8):6078-6086. doi: 10.1007/s00330-020-07667-y. Epub 2021 Jan 29.
7
Machine Learning-Based Magnetic Resonance Radiomics Analysis for Predicting Low- and High-Grade Clear Cell Renal Cell Carcinoma.
J Comput Assist Tomogr. 2023;47(6):873-881. doi: 10.1097/RCT.0000000000001453. Epub 2023 Jun 29.
8
CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma.
Eur Radiol. 2022 Apr;32(4):2552-2563. doi: 10.1007/s00330-021-08344-4. Epub 2021 Nov 10.

引用本文的文献

2
The Use of Artificial Intelligence in Urologic Oncology: Current Insights and Challenges.
Res Rep Urol. 2025 Aug 21;17:293-308. doi: 10.2147/RRU.S526184. eCollection 2025.
4
Prediction study of surrounding tissue invasion in clear cell renal cell carcinoma based on multi-phase enhanced CT radiomics.
Abdom Radiol (NY). 2025 Jun;50(6):2533-2548. doi: 10.1007/s00261-024-04712-y. Epub 2024 Nov 26.
5
Potential of quantitative T1 mapping to serve as a novel prognostic predictor of clear cell renal cell carcinoma after nephrectomy.
Quant Imaging Med Surg. 2024 Oct 1;14(10):7600-7611. doi: 10.21037/qims-23-1829. Epub 2024 Sep 26.
9
Normalization Strategies in Multi-Center Radiomics Abdominal MRI: Systematic Review and Meta-Analyses.
IEEE Open J Eng Med Biol. 2023 Apr 28;4:67-76. doi: 10.1109/OJEMB.2023.3271455. eCollection 2023.
10
Predicting the WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma Through CT-Based Tumoral and Peritumoral Radiomics.
Front Oncol. 2022 Feb 14;12:831112. doi: 10.3389/fonc.2022.831112. eCollection 2022.

本文引用的文献

1
Differentiation of renal cell carcinoma subtypes through MRI-based radiomics analysis.
Eur Radiol. 2020 Oct;30(10):5738-5747. doi: 10.1007/s00330-020-06896-5. Epub 2020 May 4.
2
Characterization of solid renal neoplasms using MRI-based quantitative radiomics features.
Abdom Radiol (NY). 2020 Sep;45(9):2840-2850. doi: 10.1007/s00261-020-02540-4.
3
Clear Cell Renal Cell Carcinoma Growth Correlates with Baseline Diffusion-weighted MRI in Von Hippel-Lindau Disease.
Radiology. 2020 Jun;295(3):583-590. doi: 10.1148/radiol.2020191016. Epub 2020 Apr 7.
4
Deep Learning Based on MRI for Differentiation of Low- and High-Grade in Low-Stage Renal Cell Carcinoma.
J Magn Reson Imaging. 2020 Nov;52(5):1542-1549. doi: 10.1002/jmri.27153. Epub 2020 Mar 28.
5
Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging.
Clin Cancer Res. 2020 Apr 15;26(8):1944-1952. doi: 10.1158/1078-0432.CCR-19-0374. Epub 2020 Jan 14.
7
The Harms of Overdiagnosis and Overtreatment in Patients with Small Renal Masses: A Mini-review.
Eur Urol Focus. 2019 Nov;5(6):943-945. doi: 10.1016/j.euf.2019.03.006. Epub 2019 Mar 21.
8
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.
Theranostics. 2019 Feb 12;9(5):1303-1322. doi: 10.7150/thno.30309. eCollection 2019.
9
Epidemiology and Risk Factors for Kidney Cancer.
J Clin Oncol. 2018 Oct 29;36(36):JCO2018791905. doi: 10.1200/JCO.2018.79.1905.
10
CT-based radiomic model predicts high grade of clear cell renal cell carcinoma.
Eur J Radiol. 2018 Jun;103:51-56. doi: 10.1016/j.ejrad.2018.04.013. Epub 2018 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验