Choi Ji Whae, Hu Rong, Zhao Yijun, Purkayastha Subhanik, Wu Jing, McGirr Aidan J, Stavropoulos S William, Silva Alvin C, Soulen Michael C, Palmer Matthew B, Zhang Paul J L, Zhu Chengzhang, Ahn Sun Ho, Bai Harrison X
Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA.
Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, 02903, USA.
Abdom Radiol (NY). 2021 Jun;46(6):2656-2664. doi: 10.1007/s00261-020-02876-x. Epub 2021 Jan 2.
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Currently, there is a lack of noninvasive methods to stratify ccRCC prognosis prior to any invasive therapies. The purpose of this study was to preoperatively predict the tumor stage, size, grade, and necrosis (SSIGN) score of ccRCC using MRI-based radiomics.
A multicenter cohort of 364 histopathologically confirmed ccRCC patients (272 low [< 4] and 92 high [≥ 4] SSIGN score) with preoperative T2-weighted and T1-contrast-enhanced MRI were retrospectively identified and divided into training (254 patients) and testing sets (110 patients). The performance of a manually optimized radiomics model was assessed by measuring accuracy, sensitivity, specificity, area under receiver operating characteristic curve (AUROC), and area under precision-recall curve (AUPRC) on an independent test set, which was not included in model training. Lastly, its performance was compared to that of a machine learning pipeline, Tree-Based Pipeline Optimization Tool (TPOT).
The manually optimized radiomics model using Random Forest classification and Analysis of Variance feature selection methods achieved an AUROC of 0.89, AUPRC of 0.81, accuracy of 0.89 (95% CI 0.816-0.937), specificity of 0.95 (95% CI 0.875-0.984), and sensitivity of 0.72 (95% CI 0.537-0.852) on the test set. The TPOT using Extra Trees Classifier achieved an AUROC of 0.94, AUPRC of 0.83, accuracy of 0.89 (95% CI 0.816-0.937), specificity of 0.95 (95% CI 0.875-0.984), and sensitivity of 0.72 (95% CI 0.537-0.852) on the test set.
Preoperative MR radiomics can accurately predict SSIGN score of ccRCC, suggesting its promise as a prognostic tool that can be used in conjunction with diagnostic markers.
透明细胞肾细胞癌(ccRCC)是肾细胞癌最常见的亚型。目前,缺乏在任何侵入性治疗之前对ccRCC预后进行分层的非侵入性方法。本研究的目的是使用基于MRI的放射组学术前预测ccRCC的肿瘤分期、大小、分级和坏死(SSIGN)评分。
回顾性纳入364例经组织病理学确诊的ccRCC患者的多中心队列(272例低[<4]和92例高[≥4]SSIGN评分),这些患者术前行T2加权和T1增强MRI检查,并分为训练组(254例患者)和测试组(110例患者)。通过在独立测试集上测量准确性、敏感性、特异性、受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)来评估手动优化的放射组学模型的性能,该测试集未包含在模型训练中。最后,将其性能与机器学习管道基于树的管道优化工具(TPOT)的性能进行比较。
使用随机森林分类和方差分析特征选择方法的手动优化放射组学模型在测试集上的AUROC为0.89,AUPRC为0.81,准确性为0.89(95%CI 0.816-0.937),特异性为0.95(95%CI 0.875-0.984),敏感性为0.72(95%CI 0.537-0.852)。使用极端随机树分类器的TPOT在测试集上的AUROC为0.94,AUPRC为0.83,准确性为0.89(95%CI 0.816-0.937),特异性为0.95(95%CI 0.875-0.984),敏感性为0.72(95%CI 0.537-0.