Suppr超能文献

基于术前 CT 的深度学习放射组学模型在预测局限性透明细胞肾细胞癌分期、大小、分级和坏死评分及预后中的应用:一项多中心研究。

A preoperative CT-based deep learning radiomics model in predicting the stage, size, grade and necrosis score and outcome in localized clear cell renal cell carcinoma: A multicenter study.

机构信息

Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

GE Healthcare, Shanghai, China.

出版信息

Eur J Radiol. 2023 Sep;166:111018. doi: 10.1016/j.ejrad.2023.111018. Epub 2023 Jul 29.

Abstract

BACKGROUND AND PURPOSE

The Stage, Size, Grade and Necrosis (SSIGN) score is the most commonly used prognostic model in clear cell renal cell carcinoma (ccRCC) patients. It is a great challenge to preoperatively predict SSIGN score and outcome of ccRCC patients. The aim of this study was to develop and validate a CT-based deep learning radiomics model (DLRM) for predicting SSIGN score and outcome in localized ccRCC.

METHODS

A multicenter 784 (training cohort/ test 1 cohort / test 2 cohort, 475/204/105) localized ccRCC patients were enrolled. Radiomics signature (RS), deep learning signature (DLS), and DLRM incorporating radiomics and deep learning features were developed for predicting SSIGN score. Model performance was evaluated with area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival analysis was used to assess the association of the model-predicted SSIGN with cancer-specific survival (CSS). Harrell's concordance index (C-index) was calculated to assess the CSS predictive accuracy of these models.

RESULTS

The DLRM achieved higher micro-average/macro-average AUCs (0.913/0.850, and 0.969/0.942, respectively in test 1 cohort and test 2 cohort) than the RS and DLS did for the prediction of SSIGN score. The CSS showed significant differences among the DLRM-predicted risk groups. The DLRM achieved higher C-indices (0.827 and 0.824, respectively in test 1 cohort and test 2 cohort) than the RS and DLS did in predicting CSS for localized ccRCC patients.

CONCLUSION

The DLRM can accurately predict the SSIGN score and outcome in localized ccRCC.

摘要

背景与目的

Stage, Size, Grade and Necrosis(SSIGN)评分是透明细胞肾细胞癌(ccRCC)患者最常用的预后模型。术前预测 SSIGN 评分和 ccRCC 患者的预后是一项巨大的挑战。本研究旨在开发和验证一种基于 CT 的深度学习放射组学模型(DLRM),用于预测局限性 ccRCC 的 SSIGN 评分和结局。

方法

纳入了 784 例(训练队列/测试 1 队列/测试 2 队列,475/204/105)局限性 ccRCC 患者。为预测 SSIGN 评分,开发了放射组学特征(RS)、深度学习特征(DLS)和结合放射组学和深度学习特征的 DLRM。使用受试者工作特征曲线下面积(AUC)评估模型性能。Kaplan-Meier 生存分析用于评估模型预测的 SSIGN 与癌症特异性生存(CSS)的相关性。计算 Harrell 一致性指数(C-index)评估这些模型对 CSS 的预测准确性。

结果

DLRM 对 SSIGN 评分的预测微平均/宏平均 AUC(在测试 1 队列和测试 2 队列中分别为 0.913/0.850 和 0.969/0.942)高于 RS 和 DLS。DLRM 预测的风险组之间 CSS 有显著差异。DLRM 对 CSS 的预测 C-index(在测试 1 队列和测试 2 队列中分别为 0.827 和 0.824)高于 RS 和 DLS。

结论

DLRM 可准确预测局限性 ccRCC 的 SSIGN 评分和结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验