Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.
Exp Eye Res. 2021 Feb;203:108426. doi: 10.1016/j.exer.2020.108426. Epub 2020 Dec 30.
Uveal melanoma (UM) is an aggressive malignancy, in which nearly 50% of the patients die from metastatic disease. Aberrant DNA methylation is recognized as an important epigenomic event in carcinogenesis. Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable source of tumor tissue, and recent technology has enabled the use of these samples in genome-wide DNA methylation analyses. Our aim was to investigate differential DNA methylation in relation to histopathological classification and survival data. In addition we sought to identify aberrant DNA methylation of genes that could be associated with metastatic disease and poor survival.
FFPE samples from UM patients (n = 23) who underwent enucleation of the eye in the period 1976-1989 were included. DNA methylation was assessed using the Illumina Infinium HumanMethylation450 array and coupled to histopathological data, Cancer Registry of Norway- (registered UM metastasis) and Norwegian Cause of Death Registry- (time and cause of death) data. Differential DNA methylation patterns contrasting histological classification, survival data and clustering properties were investigated. Survival groups were defined as "Early metastasis" (metastases and death within 2-5 years after enucleation, n = 8), "Late metastasis" (metastases and death within 9-21 years after enucleation, n = 7) and "No metastasis" (no detected metastases ≥18 years after enucleation, n = 8). A subset of samples were selected based on preliminary multi-dimensional scaling (MDS) plots, histopathological classification, chromosome 3 status, survival status and clustering properties; "Subset Early metastasis" (n = 4) vs "Subset No metastasis" (n = 4). Bioinformatics analyses were conducted in the R statistical software. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in various comparisons were assessed. Gene expression of relevant subgroups was determined by microarray analysis and quantitative reverse-transcription polymerase chain reaction (qRT-PCR).
DNA methylation analyses identified 2 clusters that separated the samples according to chromosome 3 status. Cluster 1 consisted of samples (n = 5) with chromosome 3 disomy (D3), while Cluster 2 was comprised of samples (n = 15) with chromosome 3 monosomy (M3). 1212 DMRs and 9386 DMPs were identified in M3 vs D3. No clear clusters were formed based on our predefined survival groups ("Early", "Late", "No") nor histopathological classification (Epithelioid, Mixed, Spindle). We identified significant changes in DNA methylation (beta FC ≥ 0.2, adjusted p < 0.05) between two sample subsets (n = 8). "Subset Early metastasis" (n = 4) vs "Subset No metastasis" (n = 4) identified 348 DMPs and 36 DMRs, and their differential gene expression by microarray showed that 14 DMPs and 2 DMRs corresponded to changes in gene expression (FC ≥ 1.5, p < 0.05). RNF13, ZNF217 and HYAL1 were hypermethylated and downregulated in "Subset Early metastasis" vs "Subset No metastasis" and could be potential tumor suppressors. TMEM200C, RGS10, ADAM12 and PAM were hypomethylated and upregulated in "Subset Early metastasis vs "Subset No metastasis" and could be potential oncogenes and thus markers of early metastasis and poor prognosis in UM.
DNA methylation profiling showed differential clustering of samples according to chromosome 3 status: Cluster 1 (D3) and Cluster 2 (M3). Integrated differential DNA methylation and gene expression of two subsets of samples identified genes associated with early metastasis and poor prognosis. RNF13, ZNF217 and HYAL1 are hypermethylated and candidate tumor suppressors, while TMEM200C, RGS10, ADAM12 and PAM are hypomethylated and candidate oncogenes linked to early metastasis. UM FFPE samples represent a valuable source for methylome studies and enable long-time follow-up.
葡萄膜黑色素瘤(UM)是一种侵袭性恶性肿瘤,其中近 50%的患者死于转移性疾病。异常的 DNA 甲基化被认为是致癌作用中的一个重要表观遗传事件。福尔马林固定石蜡包埋(FFPE)样本代表了肿瘤组织的宝贵来源,最近的技术已经能够在全基因组 DNA 甲基化分析中使用这些样本。我们的目的是研究与组织病理学分类和生存数据相关的差异 DNA 甲基化。此外,我们还试图确定与转移疾病和不良预后相关的基因的异常 DNA 甲基化。
纳入了 1976-1989 年行眼球摘除术的 UM 患者(n=23)的 FFPE 样本。使用 Illumina Infinium HumanMethylation450 阵列评估 DNA 甲基化,并与组织病理学数据、挪威癌症登记处(登记 UM 转移)和挪威死因登记处(时间和死因)数据相关联。研究了对比组织病理学分类、生存数据和聚类特性的差异 DNA 甲基化模式。生存组定义为“早期转移”(转移和死亡在眼球摘除后 2-5 年内,n=8)、“晚期转移”(转移和死亡在眼球摘除后 9-21 年内,n=7)和“无转移”(无检测到的转移≥18 年,n=8)。根据初步多维尺度分析(MDS)图、组织病理学分类、3 号染色体状态、生存状态和聚类特性选择了样本的子集;“子集早期转移”(n=4)与“子集无转移”(n=4)。在 R 统计软件中进行了生物信息学分析。在各种比较中评估了差异甲基化位置(DMPs)和差异甲基化区域(DMRs)。通过微阵列分析和定量逆转录聚合酶链反应(qRT-PCR)确定了相关亚组的基因表达。
DNA 甲基化分析根据 3 号染色体状态将样本分为 2 个聚类。聚类 1 由 5 个样本组成(n=5),具有 3 号染色体二倍体(D3),而聚类 2 由 15 个样本组成(n=15),具有 3 号染色体单体(M3)。M3 与 D3 相比,确定了 1212 个 DMR 和 9386 个 DMP。根据我们预先定义的生存组(“早期”、“晚期”、“无”)和组织病理学分类(上皮样、混合、梭形),没有形成明显的聚类。我们发现两个样本子集(n=8)之间的 DNA 甲基化有显著变化(beta FC≥0.2,调整后 p<0.05)。“子集早期转移”(n=4)与“子集无转移”(n=4)鉴定出 348 个 DMP 和 36 个 DMR,其微阵列的差异基因表达显示,14 个 DMP 和 2 个 DMR 对应于基因表达的变化(FC≥1.5,p<0.05)。RNF13、ZNF217 和 HYAL1 在“子集早期转移”与“子集无转移”中呈高甲基化和下调,可能是潜在的肿瘤抑制基因。TMEM200C、RGS10、ADAM12 和 PAM 在“子集早期转移”与“子集无转移”中呈低甲基化和上调,可能是潜在的癌基因,因此是 UM 中早期转移和不良预后的标志物。
DNA 甲基化谱显示根据 3 号染色体状态对样本进行差异聚类:聚类 1(D3)和聚类 2(M3)。两个样本子集的整合差异 DNA 甲基化和基因表达鉴定出与早期转移和不良预后相关的基因。RNF13、ZNF217 和 HYAL1 呈高甲基化,可能是候选肿瘤抑制基因,而 TMEM200C、RGS10、ADAM12 和 PAM 呈低甲基化,可能与早期转移相关的候选癌基因。UM FFPE 样本是甲基组学研究的宝贵来源,并能实现长期随访。