Suppr超能文献

在 Pink1 基因敲除大鼠中,背侧纹状体棘突投射神经元上谷氨酸传递增加。

Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats.

机构信息

Center for Neurodegeneration and Experimental Therapeutics, the University of Alabama at Birmingham, Birmingham, AL 35294, United States of America; Department of Neurology, the University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.

Department of Psychiatry and Behavioral Neurology, the University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.

出版信息

Neurobiol Dis. 2021 Mar;150:105246. doi: 10.1016/j.nbd.2020.105246. Epub 2020 Dec 30.

Abstract

Loss-of-function PTEN Induced Kinase 1 (PINK1) mutations cause early-onset familial Parkinson's disease (PD) with similar clinical and neuropathological characteristics as idiopathic PD. While Pink1 knockout (KO) rats have mitochondrial dysfunction, locomotor deficits, and α-synuclein aggregates in several brain regions such as cerebral cortex, dorsal striatum, and substantia nigra, the functional ramifications on synaptic circuits are unknown. Using whole cell patch clamp recordings, we found a significant increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) onto striatal spiny projection neurons (SPNs) in Pink1 KO rats at ages 4 and 6 months compared to wild-type (WT) littermates, suggesting increased excitability of presynaptic neurons. While sEPSC amplitudes were also increased at 2 and 4 months, no changes were observed in AMPAR/NMDAR ratio or receptor expression. Further analysis revealed increased glutamate release probability and decreased recovery of the synaptic vesicle pool following a train of stimulation in Pink1 KO rats. Ultrastructural analysis revealed increased excitatory and inhibitory synapse number and increased levels of presynaptic α-synuclein, while the number and structure of striatal mitochondria appeared normal. Lastly, we found that Pink1 KO rats have altered striatal dopamine tone, which together with the abnormal α- synuclein distribution and dysfunctional mitochondria, could contribute to the increase in excitatory transmission. Together, these studies show that PINK1 is necessary for normal glutamatergic transmission onto striatal SPNs and reveal possible mechanisms underlying striatal circuit dysfunction in PD.

摘要

PTEN 诱导激酶 1(PINK1)功能丧失突变导致早发性家族性帕金森病(PD),其临床和神经病理学特征与特发性 PD 相似。虽然 Pink1 敲除(KO)大鼠存在线粒体功能障碍、运动缺陷和α-突触核蛋白在大脑皮层、背侧纹状体和黑质等多个脑区聚集,但突触回路的功能后果尚不清楚。通过全细胞膜片钳记录,我们发现 Pink1 KO 大鼠在 4 个月和 6 个月时纹状体棘突投射神经元(SPNs)上的自发性兴奋性突触后电流(sEPSC)频率显著增加,与野生型(WT)同窝仔相比,提示突触前神经元兴奋性增加。虽然 sEPSC 幅度在 2 个月和 4 个月时也增加,但 AMPAR/NMDAR 比值或受体表达没有变化。进一步分析表明,Pink1 KO 大鼠的谷氨酸释放概率增加,刺激后突触囊泡池的恢复减少。超微结构分析显示兴奋性和抑制性突触数量增加,突触前α-突触核蛋白水平增加,而纹状体线粒体的数量和结构似乎正常。最后,我们发现 Pink1 KO 大鼠纹状体多巴胺水平发生改变,这与异常的α-突触核蛋白分布和功能失调的线粒体一起,可能导致兴奋性传递增加。总之,这些研究表明 PINK1 是正常谷氨酸能传递到纹状体 SPNs 所必需的,并揭示了 PD 中纹状体回路功能障碍的可能机制。

相似文献

1
Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats.
Neurobiol Dis. 2021 Mar;150:105246. doi: 10.1016/j.nbd.2020.105246. Epub 2020 Dec 30.
3
Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.
Neuropharmacology. 2016 Feb;101:460-70. doi: 10.1016/j.neuropharm.2015.10.021. Epub 2015 Oct 20.
5
Enhanced Susceptibility of PINK1 Knockout Rats to α-Synuclein Fibrils.
Neuroscience. 2020 Jun 15;437:64-75. doi: 10.1016/j.neuroscience.2020.04.032. Epub 2020 Apr 27.
7
Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum.
Neuroscience. 2019 Jun 15;409:169-179. doi: 10.1016/j.neuroscience.2019.04.033. Epub 2019 Apr 25.
9
Functional alterations of the dopaminergic and glutamatergic systems in spontaneous α-synuclein overexpressing rats.
Exp Neurol. 2017 Jan;287(Pt 1):21-33. doi: 10.1016/j.expneurol.2016.10.009. Epub 2016 Oct 20.
10
Loss of PINK1 causes age-dependent decrease of dopamine release and mitochondrial dysfunction.
Neurobiol Aging. 2019 Mar;75:1-10. doi: 10.1016/j.neurobiolaging.2018.10.025. Epub 2018 Nov 2.

引用本文的文献

1
Emergent glutamate & dopamine dysfunction in VPS35 knock-in mice and rapid reversal by LRRK2 inhibition.
NPJ Parkinsons Dis. 2025 May 3;11(1):106. doi: 10.1038/s41531-025-00948-7.
2
Targeting mitophagy in neurodegenerative diseases.
Nat Rev Drug Discov. 2025 Apr;24(4):276-299. doi: 10.1038/s41573-024-01105-0. Epub 2025 Jan 14.
4
PINK1 knockout rats show premotor cognitive deficits measured through a complex maze.
Front Neurosci. 2024 May 16;18:1390215. doi: 10.3389/fnins.2024.1390215. eCollection 2024.
5
Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson's disease, with insights into knockout models.
Zool Res. 2023 May 18;44(3):559-576. doi: 10.24272/j.issn.2095-8137.2022.406.
6
Endogenous PTEN-Induced Kinase 1 Regulates Dendritic Architecture and Spinogenesis.
J Neurosci. 2022 Oct 12;42(41):7848-7860. doi: 10.1523/JNEUROSCI.0785-22.2022. Epub 2022 Sep 7.
7
Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update.
Neurobiol Dis. 2022 Nov;174:105878. doi: 10.1016/j.nbd.2022.105878. Epub 2022 Sep 29.
9
Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration.
Transl Neurodegener. 2022 Jan 25;11(1):3. doi: 10.1186/s40035-021-00278-7.
10
Basal Synaptic Transmission and Long-Term Plasticity at CA3-CA1 Synapses Are Unaffected in Young Adult PINK1-Deficient Rats.
Front Neurosci. 2021 Aug 13;15:655901. doi: 10.3389/fnins.2021.655901. eCollection 2021.

本文引用的文献

1
Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity.
Neuron. 2020 Mar 18;105(6):1036-1047.e5. doi: 10.1016/j.neuron.2019.12.026. Epub 2020 Jan 15.
2
Brain mitochondrial impairment in early-onset Parkinson's disease with or without PINK1 mutation.
Mov Disord. 2020 Mar;35(3):504-507. doi: 10.1002/mds.27946. Epub 2020 Jan 2.
3
PINK1 phosphorylates ubiquitin predominantly in astrocytes.
NPJ Parkinsons Dis. 2019 Dec 11;5:29. doi: 10.1038/s41531-019-0101-9. eCollection 2019.
4
To be or not to be pink(1): contradictory findings in an animal model for Parkinson's disease.
Brain Commun. 2019;1(1):fcz016. doi: 10.1093/braincomms/fcz016. Epub 2019 Sep 13.
6
Loss of Non-Apoptotic Role of Caspase-3 in the PINK1 Mouse Model of Parkinson's Disease.
Int J Mol Sci. 2019 Jul 11;20(14):3407. doi: 10.3390/ijms20143407.
7
Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11113-11115. doi: 10.1073/pnas.1903049116. Epub 2019 May 20.
8
Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum.
Neuroscience. 2019 Jun 15;409:169-179. doi: 10.1016/j.neuroscience.2019.04.033. Epub 2019 Apr 25.
9
Analysis of α-Synuclein Pathology in PINK1 Knockout Rat Brains.
Front Neurosci. 2019 Jan 9;12:1034. doi: 10.3389/fnins.2018.01034. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验