Suppr超能文献

三维共聚焦扫描椎间盘细胞:在海藻酸钠珠内及天然微环境中。

Confocal scanning of intervertebral disc cells in 3D: Inside alginate beads and in native microenvironment.

作者信息

Hernandez Paula A, Jacobsen Timothy D, Barati Zahra, Chahine Nadeen O

机构信息

Department of Orthopaedic Surgery University of Texas Southwestern Medical Center Dallas Texas USA.

Department of Biomedical Engineering Columbia University New York New York USA.

出版信息

JOR Spine. 2020 Jul 15;3(4):e1106. doi: 10.1002/jsp2.1106. eCollection 2020 Dec.

Abstract

The interaction between cells and their extracellular matrix (ECM) is crucial to maintain both tissue and cellular homeostasis. Indeed, cell phenotype is significantly affected by the 3D microenvironment. Although highly convenient, isolating cells from the intervertebral disc (IVD) and growing them in 2D on plastic or glass substrates, causes them to rapidly lose their phenotype and consequently alter their gene and protein expression. While characterization of cells in their native or simulated 3D environment is preferred, such approaches are complexed by limitations in phenotypic readouts. In the current article, we describe a detailed protocol to study nucleus pulposus cells in 3D-embedded in alginate as a permeable cell-staining reservoir, as well as adaptation for cell staining and imaging in their native ECM. This method allows for detection of phenotypical and cytoskeletal changes in cells within native tissue or 3D alginate beads using confocal microscopy, without the need for histological processing.

摘要

细胞与其细胞外基质(ECM)之间的相互作用对于维持组织和细胞内稳态至关重要。事实上,细胞表型会受到三维微环境的显著影响。尽管将椎间盘(IVD)细胞分离出来并在塑料或玻璃基质上进行二维培养非常方便,但这会导致它们迅速失去其表型,从而改变其基因和蛋白质表达。虽然在天然或模拟的三维环境中对细胞进行表征是首选方法,但此类方法因表型读数的局限性而变得复杂。在本文中,我们描述了一种详细的方案,用于研究三维包埋在藻酸盐中的髓核细胞,藻酸盐作为一种可渗透的细胞染色储库,以及适用于在其天然细胞外基质中进行细胞染色和成像的方法。该方法允许使用共聚焦显微镜检测天然组织或三维藻酸盐珠内细胞的表型和细胞骨架变化,而无需进行组织学处理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1fe/7770191/d491bf13cf8a/JSP2-3-e1106-g001.jpg

相似文献

1
Confocal scanning of intervertebral disc cells in 3D: Inside alginate beads and in native microenvironment.
JOR Spine. 2020 Jul 15;3(4):e1106. doi: 10.1002/jsp2.1106. eCollection 2020 Dec.
3
Integrin and syndecan binding peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype.
Biomaterials. 2021 Oct;277:121113. doi: 10.1016/j.biomaterials.2021.121113. Epub 2021 Sep 1.
4
Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation.
Osteoarthritis Cartilage. 2015 Jul;23(7):1194-203. doi: 10.1016/j.joca.2015.02.166. Epub 2015 Mar 5.
7
Immunocytochemistry Analysis of HepG2 Cell 3D Culture Encapsulated as Spheroids in Alginate Beads.
Methods Mol Biol. 2021;2240:197-206. doi: 10.1007/978-1-0716-1091-6_14.
9
Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration.
J Orthop Res. 2016 Aug;34(8):1316-26. doi: 10.1002/jor.23244. Epub 2016 Apr 13.

引用本文的文献

本文引用的文献

1
Early-Onset Osteoarthritis originates at the chondrocyte level in Hip Dysplasia.
Sci Rep. 2020 Jan 17;10(1):627. doi: 10.1038/s41598-020-57431-x.
2
A step-by-step protocol for isolation of murine nucleus pulposus cells.
JOR Spine. 2019 Dec 19;2(4):e1073. doi: 10.1002/jsp2.1073. eCollection 2019 Dec.
3
Mechanotransduction and cell biomechanics of the intervertebral disc.
JOR Spine. 2018 Sep;1(3). doi: 10.1002/jsp2.1026. Epub 2018 Jul 3.
5
Calcium/Cobalt Alginate Beads as Functional Scaffolds for Cartilage Tissue Engineering.
Stem Cells Int. 2016;2016:2030478. doi: 10.1155/2016/2030478. Epub 2016 Jan 6.
7
Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation.
Osteoarthritis Cartilage. 2015 Jul;23(7):1194-203. doi: 10.1016/j.joca.2015.02.166. Epub 2015 Mar 5.
9
Loss of notochordal cell phenotype in 3D-cell cultures: implications for disc physiology and disc repair.
Arch Orthop Trauma Surg. 2014 Dec;134(12):1673-81. doi: 10.1007/s00402-014-2097-2. Epub 2014 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验