Jiang Shengli, Noh JungHyun, Park Chulsoon, Smith Alexander D, Abbott Nicholas L, Zavala Victor M
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA.
Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, NY 14853, USA.
Analyst. 2021 Feb 22;146(4):1224-1233. doi: 10.1039/d0an02220a.
Detection and quantification of bacterial endotoxins is important in a range of health-related contexts, including during pharmaceutical manufacturing of therapeutic proteins and vaccines. Here we combine experimental measurements based on nematic liquid crystalline droplets and machine learning methods to show that it is possible to classify bacterial sources (Escherichia coli, Pseudomonas aeruginosa, Salmonella minnesota) and quantify concentration of endotoxin derived from all three bacterial species present in aqueous solution. The approach uses flow cytometry to quantify, in a high-throughput manner, changes in the internal ordering of micrometer-sized droplets of nematic 4-cyano-4'-pentylbiphenyl triggered by the endotoxins. The changes in internal ordering alter the intensities of light side-scattered (SSC, large-angle) and forward-scattered (FSC, small-angle) by the liquid crystal droplets. A convolutional neural network (Endonet) is trained using the large data sets generated by flow cytometry and shown to predict endotoxin source and concentration directly from the FSC/SSC scatter plots. By using saliency maps, we reveal how EndoNet captures subtle differences in scatter fields to enable classification of bacterial source and quantification of endotoxin concentration over a range that spans eight orders of magnitude (0.01 pg mL-1 to 1 μg mL-1). We attribute changes in scatter fields with bacterial origin of endotoxin, as detected by EndoNet, to the distinct molecular structures of the lipid A domains of the endotoxins derived from the three bacteria. Overall, we conclude that the combination of liquid crystal droplets and EndoNet provides the basis of a promising analytical approach for endotoxins that does not require use of complex biologically-derived reagents (e.g., Limulus amoebocyte lysate).
在一系列与健康相关的背景下,包括治疗性蛋白质和疫苗的制药生产过程中,细菌内毒素的检测和定量都很重要。在此,我们结合基于向列型液晶液滴的实验测量和机器学习方法,以表明可以对细菌来源(大肠杆菌、铜绿假单胞菌、明尼苏达沙门氏菌)进行分类,并对水溶液中存在的所有三种细菌产生的内毒素浓度进行定量。该方法使用流式细胞术以高通量方式定量由内毒素触发的向列型4-氰基-4'-戊基联苯微米级液滴内部有序性的变化。内部有序性的变化改变了液晶液滴的侧向散射光(SSC,大角度)和前向散射光(FSC,小角度)的强度。使用流式细胞术生成的大数据集训练卷积神经网络(Endonet),结果表明它可以直接从FSC/SSC散点图预测内毒素来源和浓度。通过使用显著性图,我们揭示了EndoNet如何捕捉散射场中的细微差异,从而能够在跨越八个数量级(0.01 pg mL-1至1 μg mL-1)的范围内对细菌来源进行分类和对内毒素浓度进行定量。我们将EndoNet检测到的散射场变化归因于内毒素的细菌来源,这是由于三种细菌产生的内毒素的脂多糖A结构域具有不同的分子结构。总体而言,我们得出结论,液晶液滴和EndoNet的结合为内毒素提供了一种有前景的分析方法的基础,该方法不需要使用复杂的生物衍生试剂(例如鲎试剂)。