Suppr超能文献

贝叶斯统计在外科决策中的应用。

Bayesian Statistics for Surgical Decision Making.

机构信息

Division of Acute Care Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, Texas, USA.

Center for Surgical Trials and Evidence-based Practice, McGovern Medical School at UTHealth, Houston, Texas, USA.

出版信息

Surg Infect (Larchmt). 2021 Aug;22(6):620-625. doi: 10.1089/sur.2020.391. Epub 2020 Dec 31.

Abstract

Application of clinical study findings to surgical decision making requires accurate interpretation of the results, integration of the findings within the context of pre-existing knowledge and use of statistics to answer clinically relevant questions. Bayesian analyses are optimally suited for interpretation of study findings, supporting translation to the bedside. Surgical decision making is a complex process that draws on an individual clinician's medical knowledge, experience, data, and the patient's unique characteristics and preferences. Subjective and objective knowledge may be merged to derive a probability of benefit or harm of a treatment under consideration. Bayesian reasoning complements the clinical decision-making process by incorporating known evidence and data from a new study to determine the probability of an outcome of interest. Bayesian analyses are statistically robust and intuitive when translating findings of a study into clinical care. In contrast, frequentist statistics are poorly suited to translate study findings to clinical application. This review aims to highlight the benefits of incorporating Bayesian analyses into clinical research. Bayesian analyses offer clinically relevant information including the probability of benefit or harm of a treatment under consideration while accounting for uncertainty. This information may be incorporated easily and accurately into surgical decision making.

摘要

临床研究结果在外科决策中的应用需要对结果进行准确的解读,将研究结果与现有知识背景相结合,并运用统计学来回答临床相关问题。贝叶斯分析最适合用于解读研究结果,支持将研究结果转化为临床实践。外科决策是一个复杂的过程,需要综合考虑个体临床医生的医学知识、经验、数据以及患者的独特特征和偏好。主观知识和客观知识可以合并,以得出考虑中的治疗方法的获益或危害的概率。贝叶斯推理通过整合已知的证据和来自新研究的数据来确定感兴趣的结果的概率,从而补充临床决策过程。贝叶斯分析在将研究结果转化为临床护理方面具有统计学稳健性和直观性。相比之下,频率统计学方法不适合将研究结果转化为临床应用。本文旨在强调将贝叶斯分析纳入临床研究的益处。贝叶斯分析提供了与临床相关的信息,包括考虑中的治疗方法的获益或危害的概率,同时考虑了不确定性。这些信息可以方便、准确地纳入外科决策中。

相似文献

1
Bayesian Statistics for Surgical Decision Making.
Surg Infect (Larchmt). 2021 Aug;22(6):620-625. doi: 10.1089/sur.2020.391. Epub 2020 Dec 31.
2
Bayesian statistics for clinical research.
Lancet. 2024 Sep 14;404(10457):1067-1076. doi: 10.1016/S0140-6736(24)01295-9.
3
Incorporating uncertainty into medical decision making: an approach to unexpected test results.
Med Decis Making. 2009 Jan-Feb;29(1):116-24. doi: 10.1177/0272989X08323620. Epub 2008 Sep 23.
4
A Bayesian approach to stochastic cost-effectiveness analysis.
Health Econ. 1999 May;8(3):257-61. doi: 10.1002/(sici)1099-1050(199905)8:3<257::aid-hec427>3.0.co;2-e.
5
Introduction to Bayesian reasoning.
Int J Technol Assess Health Care. 2001 Winter;17(1):9-16. doi: 10.1017/s0266462301104022.
6
Neural mechanisms for integrating prior knowledge and likelihood in value-based probabilistic inference.
J Neurosci. 2015 Jan 28;35(4):1792-805. doi: 10.1523/JNEUROSCI.3161-14.2015.
7
Clinical trials in critical care: can a Bayesian approach enhance clinical and scientific decision making?
Lancet Respir Med. 2021 Feb;9(2):207-216. doi: 10.1016/S2213-2600(20)30471-9. Epub 2020 Nov 20.
8
Using full probability models to compute probabilities of actual interest to decision makers.
Int J Technol Assess Health Care. 2001 Winter;17(1):17-26. doi: 10.1017/s0266462301104034.
9
Clinical judgement in the interpretation of evidence: A Bayesian approach.
J Clin Nurs. 2006 Dec;15(12):1489-97. doi: 10.1111/j.1365-2702.2005.01487.x.
10
Can natural selection encode Bayesian priors?
J Theor Biol. 2017 Aug 7;426:57-66. doi: 10.1016/j.jtbi.2017.05.017. Epub 2017 May 20.

引用本文的文献

1
Poor oral health is associated with social vulnerability in critically ill trauma patients.
Trauma Surg Acute Care Open. 2025 Jun 12;10(2):e001636. doi: 10.1136/tsaco-2024-001636. eCollection 2025.
3
Patient-Reported Outcomes Following Severe Abdominal Trauma: A Secondary Analysis of the Damage Control Laparotomy Trial.
J Surg Res. 2024 Jan;293:57-63. doi: 10.1016/j.jss.2023.06.042. Epub 2023 Sep 14.
4
Minimally Invasive Surgery With Thrombolysis for Intracerebral Hemorrhage Evacuation: Bayesian Reanalysis of a Randomized Controlled Trial.
Neurology. 2023 Oct 17;101(16):e1614-e1622. doi: 10.1212/WNL.0000000000207735. Epub 2023 Sep 8.
5
Dysphagia is associated with worse clinical outcomes in geriatric trauma patients.
Trauma Surg Acute Care Open. 2022 Dec 5;7(1):e001043. doi: 10.1136/tsaco-2022-001043. eCollection 2022.

本文引用的文献

2
Artificial Intelligence and Surgical Decision-making.
JAMA Surg. 2020 Feb 1;155(2):148-158. doi: 10.1001/jamasurg.2019.4917.
3
Problem with p values: why p values do not tell you if your treatment is likely to work.
Postgrad Med J. 2020 Jan;96(1131):1-3. doi: 10.1136/postgradmedj-2019-137079. Epub 2019 Oct 29.
4
Empirical evaluation of very large treatment effects of medical interventions.
JAMA. 2012 Oct 24;308(16):1676-84. doi: 10.1001/jama.2012.13444.
5
The frequency of medical reversal.
Arch Intern Med. 2011 Oct 10;171(18):1675-6. doi: 10.1001/archinternmed.2011.295. Epub 2011 Jul 11.
6
Randomisation to protect against selection bias in healthcare trials.
Cochrane Database Syst Rev. 2011 Apr 13;2011(4):MR000012. doi: 10.1002/14651858.MR000012.pub3.
8
Publication bias in clinical trials due to statistical significance or direction of trial results.
Cochrane Database Syst Rev. 2009 Jan 21;2009(1):MR000006. doi: 10.1002/14651858.MR000006.pub3.
9
Bayesian clinical trials.
Nat Rev Drug Discov. 2006 Jan;5(1):27-36. doi: 10.1038/nrd1927.
10
Which resources should be used to identify RCT/CCTs for systematic reviews: a systematic review.
BMC Med Res Methodol. 2005 Aug 10;5:24. doi: 10.1186/1471-2288-5-24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验