Maher Emily K, O'Malley Kassidy N, Heffron Joe, Huo Jingwan, Mayer Brooke K, Wang Yin, McNamara Patrick J
Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA.
Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
Chemosphere. 2019 Apr;220:1141-1149. doi: 10.1016/j.chemosphere.2018.12.161. Epub 2018 Dec 23.
Estrogenic compounds can cause human and ecological health issues and have been detected in surface and drinking water. In this research a reactor analysis determined the impact of operational parameters, the best fit kinetic model for the removal of estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) using a bench-top iron electrocoagulation reactor, and characterized the floc generated in-situ. The parameters investigated were current density, conductivity, stir rate, and polarity reversal. Estrogen removal correlated well with an increase in current density, while conductivity did not impact removal but did reduce potentials. High stir rates and frequent polarity reversal demonstrated greater removal. The operating parameters that achieved the greatest estrogen removal were a current density of 16.7 mA cm, conductivity of 1000 μS cm, stir rate of 500 rpm, and a polarity reversal time of 30 s. These parameters led to average removal efficiencies of 81%, 87%, 85%, and 97% for E1, E2, E3, and EE2, respectively. The removal data for all estrogenic compounds best fit a pseudo-first order relationship with kinetic rate constants of 0.015 min for E1 and E2, 0.016 min for E3 and 0.040 min for EE2. The floc formed in-situ were characterized by determining the crystalline phases with X-ray diffraction, the size and zeta potential, and the shape and major components using scanning electron microscope with energy-dispersive X-ray spectrometer. The iron coagulant generated during electrocoagulation was lepidocrocite with a point of zero charge of 5.67 and an average floc diameter of 2255 nm.
雌激素类化合物会引发人类健康和生态问题,并且已在地表水和饮用水中被检测到。在本研究中,通过反应器分析确定了运行参数的影响、使用台式铁电凝聚反应器去除雌酮(E1)、17β-雌二醇(E2)、雌三醇(E3)和17α-乙炔基雌二醇(EE2)的最佳拟合动力学模型,并对原位生成的絮体进行了表征。所研究的参数包括电流密度、电导率、搅拌速率和极性反转。雌激素去除率与电流密度的增加密切相关,而电导率虽不影响去除效果,但会降低电位。高搅拌速率和频繁的极性反转显示出更高的去除率。实现最大雌激素去除率的运行参数为电流密度16.7 mA/cm、电导率1000 μS/cm、搅拌速率500 rpm和极性反转时间30 s。这些参数分别使E1、E2、E3和EE2的平均去除效率达到81%、87%、85%和97%。所有雌激素类化合物的去除数据最符合伪一级关系,E1和E2的动力学速率常数为0.015 min,E3为0.016 min,EE2为0.040 min。通过X射线衍射确定晶体相、使用扫描电子显微镜和能量色散X射线光谱仪确定尺寸、zeta电位、形状和主要成分,对原位形成的絮体进行了表征。电凝聚过程中产生的铁凝聚剂为纤铁矿,零电荷点为5.67,平均絮体直径为2255 nm。