Yin Zhenhua, Li Cheng, Tie Ying, Duan Yuechen
School of Mechanical and Power Engineering, Zhengzhou University, Science Road 100, 450001 Zhengzhou, China.
Sensors (Basel). 2020 Dec 31;21(1):219. doi: 10.3390/s21010219.
Carbon fiber-reinforced polymer (CFRP) laminates, a key composite material, are widely used in aircraft structures and are susceptible to low-velocity impact (LVI) damage from bird strikes, lightning strikes, hail impacts and other situations. Therefore, finding a method that repairs the damaged structure and detects the effect of these repairs under LVI is a very important goal. In this work, the repair effect of LVI damage in CFRP laminates repaired with patches of various sizes is investigated via experimental and numerical nonlinear Lamb wave analyses. An integrated numerical procedure that combines LVI with nonlinear Lamb wave detection is developed to predict the nonlinear Lamb wave behavior in LVI-damaged patch-repaired CFRP laminates. The CFRP laminate damage in the nonlinear Lamb wave simulation is evaluated based on relative acoustic nonlinearity parameters (RANPs). As a result, the integrated numerical procedure is validated with drop-weight impact tests and RAM-5000 SNAP nonlinear ultrasonic detection system. An optimal patch design is established via interpolation to optimize the absorbed energy, delamination surface area, second RANP and third RANP with different patch repair sizes. These parameters exhibit consistent curve fitting trends, indicating that they can be used as important indicators of impact damage. The optimal circular patch design with a radius of 2.5 r has better impact resistance behavior and repair performance.
碳纤维增强聚合物(CFRP)层压板作为一种关键复合材料,广泛应用于飞机结构中,且易受到鸟击、雷击、冰雹撞击等情况造成的低速冲击(LVI)损伤。因此,找到一种修复受损结构并检测其在低速冲击下修复效果的方法是一个非常重要的目标。在这项工作中,通过实验和数值非线性兰姆波分析,研究了用不同尺寸补片修复的CFRP层压板中低速冲击损伤的修复效果。开发了一种将低速冲击与非线性兰姆波检测相结合的综合数值程序,以预测低速冲击损伤的补片修复CFRP层压板中的非线性兰姆波行为。基于相对声学非线性参数(RANP)对非线性兰姆波模拟中的CFRP层压板损伤进行评估。结果,通过落锤冲击试验和RAM - 5000 SNAP非线性超声检测系统对该综合数值程序进行了验证。通过插值建立了一种最优补片设计,以优化不同补片修复尺寸下的吸收能量、分层表面积、第二RANP和第三RANP。这些参数呈现出一致的曲线拟合趋势,表明它们可作为冲击损伤的重要指标。半径为2.5r的最优圆形补片设计具有更好的抗冲击性能和修复性能。