Zhu Yunyi, Liu Ji, Guo Tong, Wang Jing Jing, Tang Xiuzhi, Nicolosi Valeria
College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, Dublin 2, Ireland.
ACS Nano. 2021 Jan 26;15(1):1465-1474. doi: 10.1021/acsnano.0c08830. Epub 2021 Jan 5.
The fast development of terahertz technologies demands high-performance electromagnetic interference (EMI) shielding materials to create safe electromagnetic environments. Despite tremendous breakthroughs in achieving superb shielding efficiency (SE), conventional shielding materials have high reflectivity and cannot be re-edited or recycled once formed, resulting in detrimental secondary electromagnetic pollution and poor adaptability. Herein, a hydrogel-type shielding material incorporating MXene and poly(acrylic acid) is fabricated through a biomineralization-inspired assembly route. The composite hydrogel exhibits excellent stretchability and recyclability, favorable shape adaptability and adhesiveness, and fast self-healing capability, demonstrating great application flexibility and reliability. More interestingly, the shielding performance of the hydrogel shows absorption-dominated feature due to the combination of the porous structure, moderate conductivity, and internal water-rich environment. High EMI SE of 45.3 dB and broad effective absorption bandwidth (0.2-2.0 THz) with excellent refection loss of 23.2 dB can be simultaneously achieved in an extremely thin hydrogel (0.13 mm). Furthermore, such hydrogel demonstrates sensitive deformation responses and can be used as an on-skin sensor. This work provides not only an alternative strategy for designing next-generation EMI shielding material but also a highly efficient and convenient method for fabricating MXene composite on macroscopic scales.
太赫兹技术的快速发展需要高性能电磁干扰(EMI)屏蔽材料来创造安全的电磁环境。尽管在实现卓越的屏蔽效率(SE)方面取得了巨大突破,但传统屏蔽材料具有高反射率,一旦成型就无法重新编辑或回收利用,从而导致有害的二次电磁污染和适应性差。在此,通过仿生矿化组装路线制备了一种包含MXene和聚丙烯酸的水凝胶型屏蔽材料。该复合水凝胶具有优异的拉伸性和可回收性、良好的形状适应性和粘附性以及快速的自愈能力,展现出极大的应用灵活性和可靠性。更有趣的是,由于多孔结构、适度的导电性和内部富水环境的结合,水凝胶的屏蔽性能呈现出以吸收为主的特征。在极薄的水凝胶(0.13毫米)中可同时实现45.3分贝的高EMI SE和23.2分贝的优异反射损耗的宽有效吸收带宽(0.2 - 2.0太赫兹)。此外,这种水凝胶表现出灵敏的变形响应,可作为一种皮肤传感器。这项工作不仅为设计下一代EMI屏蔽材料提供了一种替代策略,还为在宏观尺度上制备MXene复合材料提供了一种高效便捷的方法。