Suppr超能文献

利用转录组分析预测乳腺癌复发的代谢基因特征。

Metabolic gene signature for predicting breast cancer recurrence using transcriptome analysis.

机构信息

Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.

Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.

出版信息

Future Oncol. 2021 Jan;17(1):71-80. doi: 10.2217/fon-2020-0281. Epub 2021 Jan 5.

Abstract

The study aimed at identifying a metabolic gene signature for stratifying the risk of recurrence in breast cancer. The data of patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The limma package was used to identify differentially expressed metabolic genes, and a metabolic gene signature was constructed. A five-gene metabolic signature was established that demonstrated satisfactory accuracy and predictive power in both training and validation cohorts. Also, a nomogram for predicting recurrence-free survival was established using a combination of the metabolism gene risk score and the clinicopathological features. The proposed metabolic gene signature and nomogram have a significant prognostic value and may improve the recurrence risk stratification for breast cancer patients.

摘要

本研究旨在确定一种代谢基因特征,以分层乳腺癌复发的风险。患者的数据来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)。使用 limma 包来识别差异表达的代谢基因,并构建代谢基因特征。建立了一个由五个基因组成的代谢特征,在训练和验证队列中均表现出令人满意的准确性和预测能力。此外,还使用代谢基因风险评分和临床病理特征的组合建立了预测无复发生存率的列线图。所提出的代谢基因特征和列线图具有显著的预后价值,可能改善乳腺癌患者的复发风险分层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验