Hofmann Clarissa L M, Fischer Stefan, Eriksen Emil H, Bläsi Benedikt, Reitz Christian, Yazicioglu Deniz, Howard Ian A, Richards Bryce S, Goldschmidt Jan Christoph
Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße 2, 79110, Freiburg, Germany.
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Nat Commun. 2021 Jan 4;12(1):104. doi: 10.1038/s41467-020-20305-x.
Photonic structures can be designed to tailor luminescence properties of materials, which becomes particularly interesting for non-linear phenomena, such as photon upconversion. However, there is no adequate theoretical framework to optimize photonic structure designs for upconversion enhancement. Here, we present a comprehensive theoretical model describing photonic effects on upconversion and confirm the model's predictions by experimental realization of 1D-photonic upconverter devices with large statistics and parameter scans. The measured upconversion photoluminescence enhancement reaches 82 ± 24% of the simulated enhancement, in the mean of 2480 separate measurements, scanning the irradiance and the excitation wavelength on 40 different sample designs. Additionally, the trends expected from the modeled interaction of photonic energy density enhancement, local density of optical states and internal upconversion dynamics, are clearly validated in all experimentally performed parameter scans. Our simulation tool now opens the possibility of precisely designing photonic structure designs for various upconverting materials and applications.
光子结构可以被设计用来调整材料的发光特性,这对于非线性现象(如光子上转换)来说变得尤为有趣。然而,目前还没有足够的理论框架来优化光子结构设计以增强上转换。在此,我们提出了一个全面的理论模型,描述光子对上转换的影响,并通过对具有大量统计数据和参数扫描的一维光子上转换器件进行实验实现,证实了该模型的预测。在对40种不同样品设计进行辐照度和激发波长扫描的2480次单独测量中,测得的上转换光致发光增强平均达到模拟增强的82±24%。此外,在所有实验进行的参数扫描中,光子能量密度增强、光学态局部密度和内部上转换动力学之间相互作用模型所预期的趋势都得到了明确验证。我们的模拟工具现在为精确设计适用于各种上转换材料和应用的光子结构设计开辟了可能性。