Hudson K L, Srinivasan A, Goulko O, Adam J, Wang Q, Yeoh L A, Klochan O, Farrer I, Ritchie D A, Ludwig A, Wieck A D, von Delft J, Hamilton A R
School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of New South Wales, Sydney, NSW, 2052, Australia.
Nat Commun. 2021 Jan 4;12(1):5. doi: 10.1038/s41467-020-19895-3.
One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications.
具有强自旋轨道相互作用的一维半导体系统既具有基本的研究价值,又在拓扑量子计算中有潜在应用。施加磁场可以打开一个自旋能隙,这是马约拉纳零模的一个先决条件。自旋能隙预计会表现为一维电导平台上与磁场相关的凹陷。然而,无序和相互作用效应使得识别自旋能隙特征具有挑战性。在这里,我们通过实验和数值方法研究了一系列低无序p型砷化镓量子点接触中的一维通道,其中自旋轨道和空穴-空穴相互作用很强。我们基于对施加磁场方向的线性和非线性响应,展示了一种探测自旋能隙的替代特征,该特征对无序不敏感,并提取出自旋轨道能隙ΔE≈500微电子伏特。这种方法可以使一维空穴系统发展成为用于拓扑量子应用的可扩展且可重复的平台。