Suppr超能文献

一种可视化小鼠脊髓神经元网络的组合方法:改良的高尔基-考克斯法与同步辐射微计算机断层扫描的结合。

A combinatorial method to visualize the neuronal network in the mouse spinal cord: combination of a modified Golgi-Cox method and synchrotron radiation micro-computed tomography.

机构信息

Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.

Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.

出版信息

Histochem Cell Biol. 2021 Apr;155(4):477-489. doi: 10.1007/s00418-020-01949-8. Epub 2021 Jan 4.

Abstract

Exploring the three-dimensional (3D) morphology of neurons is essential to understanding spinal cord function and associated diseases comprehensively. However, 3D imaging of the neuronal network in the broad region of the spinal cord at cellular resolution remains a challenge in the field of neuroscience. In this study, to obtain high-resolution 3D imaging of a detailed neuronal network in the mass of the spinal cord, the combination of synchrotron radiation micro-computed tomography (SRμCT) and the Golgi-cox staining were used. We optimized the Golgi-Cox method (GCM) and developed a modified GCM (M-GCM), which improved background staining, reduced the number of artefacts, and diminished the impact of incomplete vasculature compared to the current GCM. Moreover, we achieved high-resolution 3D imaging of the detailed neuronal network in the spinal cord through the combination of SRμCT and M-GCM. Our results showed that the M-GCM increased the contrast between the neuronal structure and its surrounding extracellular matrix. Compared to the GCM, the M-GCM also diminished the impact of the artefacts and incomplete vasculature on the 3D image. Additionally, the 3D neuronal architecture was successfully quantified using a combination of SRμCT and M-GCM. The SRμCT was shown to be a valuable non-destructive tool for 3D visualization of the neuronal network in the broad 3D region of the spinal cord. Such a combinatorial method will, therefore, transform the presentation of Golgi staining from 2 to 3D, providing significant improvements in the 3D rendering of the neuronal network.

摘要

探索神经元的三维(3D)形态对于全面理解脊髓功能和相关疾病至关重要。然而,在神经科学领域,仍然难以在脊髓的广泛区域以细胞分辨率对神经元网络进行 3D 成像。在这项研究中,为了在脊髓质内获得详细神经元网络的高分辨率 3D 成像,我们结合使用同步辐射微计算机断层扫描(SRμCT)和高尔基染色法。我们对高尔基染色法(GCM)进行了优化,并开发了改良的高尔基染色法(M-GCM),与当前的 GCM 相比,M-GCM 改善了背景染色,减少了伪影数量,并减轻了不完全血管系统的影响。此外,我们通过结合 SRμCT 和 M-GCM 实现了脊髓内详细神经元网络的高分辨率 3D 成像。结果表明,M-GCM 增加了神经元结构与其周围细胞外基质之间的对比度。与 GCM 相比,M-GCM 还减轻了伪影和不完全血管系统对 3D 图像的影响。此外,我们还成功地使用 SRμCT 和 M-GCM 的组合对 3D 神经元结构进行了定量。结果表明,SRμCT 是一种非常有价值的非破坏性工具,可用于在脊髓的广泛 3D 区域中可视化神经元网络。这种组合方法将使高尔基染色从 2D 转变为 3D,从而大大改善神经元网络的 3D 呈现效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff37/8062354/66881d0dab31/418_2020_1949_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验