Suppr超能文献

利用同步辐射微计算机断层扫描技术对小鼠脊髓中的微血管和神经网络进行三维可视化。

Simultaneous 3D Visualization of the Microvascular and Neural Network in Mouse Spinal Cord Using Synchrotron Radiation Micro-Computed Tomography.

机构信息

Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.

出版信息

Neurosci Bull. 2021 Oct;37(10):1469-1480. doi: 10.1007/s12264-021-00715-7. Epub 2021 Jun 19.

Abstract

Effective methods for visualizing neurovascular morphology are essential for understanding the normal spinal cord and the morphological alterations associated with diseases. However, ideal techniques for simultaneously imaging neurovascular structure in a broad region of a specimen are still lacking. In this study, we combined Golgi staining with angiography and synchrotron radiation micro-computed tomography (SRμCT) to visualize the 3D neurovascular network in the mouse spinal cord. Using our method, the 3D neurons, nerve fibers, and vasculature in a broad region could be visualized in the same image at cellular resolution without destructive sectioning. Besides, we found that the 3D morphology of neurons, nerve fiber tracts, and vasculature visualized by SRμCT were highly consistent with that visualized using the histological method. Moreover, the 3D neurovascular structure could be quantitatively evaluated by the combined methodology. The method shown here will be useful in fundamental neuroscience studies.

摘要

有效的可视化神经血管形态的方法对于理解正常脊髓以及与疾病相关的形态改变至关重要。然而,同时在标本的大区域成像神经血管结构的理想技术仍然缺乏。在这项研究中,我们将高尔基染色与血管造影和同步辐射微计算机断层扫描(SRμCT)相结合,以可视化小鼠脊髓中的 3D 神经血管网络。使用我们的方法,在不进行破坏性切片的情况下,可以在同一图像中以细胞分辨率可视化大区域中的 3D 神经元、神经纤维和脉管系统。此外,我们发现 SRμCT 可视化的神经元、神经纤维束和脉管系统的 3D 形态与组织学方法可视化的形态高度一致。此外,通过联合方法可以对 3D 神经血管结构进行定量评估。这里展示的方法将有助于基础神经科学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c6/8490558/594da5c5458c/12264_2021_715_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验