Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
Eur Biophys J. 2021 May;50(3-4):353-362. doi: 10.1007/s00249-020-01485-2. Epub 2021 Jan 4.
Analytical ultracentrifugation (AUC) is based on the concept of recording and analyzing macroscopic macromolecular redistribution that results from a centrifugal force acting on the mass of suspended macromolecules in solution. Since AUC rests on first principles, it can provide an absolute measurement of macromolecular mass, sedimentation and diffusion coefficients, and many other quantities, provided that the solvent density and viscosity are known, and provided that the instrument is properly calibrated. Unfortunately, a large benchmark study revealed that many instruments exhibit very significant systematic errors. This includes the magnification of the optical detection system used to determine migration distance, the measurement of sedimentation time, and the measurement of the solution temperature governing viscosity. We have previously developed reference materials, tools, and protocols to detect and correct for systematic measurement errors in the AUC by comparison with independently calibrated standards. This 'external calibration' resulted in greatly improved precision and consistency of parameters across laboratories. Here we detail the steps required for calibration of the different data dimensions in the AUC. We demonstrate the calibration of three different instruments with absorbance and interference optical detection, and use measurements of the sedimentation coefficient of NISTmAb monomer as a test of consistency. Whereas the measured uncorrected sedimentation coefficients span a wide range from 6.22 to 6.61 S, proper calibration resulted in a tenfold reduced standard deviation of sedimentation coefficients. The calibrated relative standard deviation and mean error of 0.2% and 0.07%, respectively, is comparable with statistical errors and side-by-side repeatability in a single instrument.
分析超速离心(AUC)基于记录和分析宏观大分子再分配的概念,这是由于离心力作用于溶液中悬浮大分子的质量而产生的。由于 AUC 基于基本原理,因此可以提供大分子质量、沉降和扩散系数以及许多其他量的绝对测量值,前提是已知溶剂密度和粘度,并且仪器经过适当校准。不幸的是,一项大型基准研究表明,许多仪器存在非常显著的系统误差。这包括用于确定迁移距离的光学检测系统的放大倍数、沉降时间的测量以及控制粘度的溶液温度的测量。我们之前已经开发了参考材料、工具和协议,通过与独立校准的标准进行比较,来检测和纠正 AUC 中的系统测量误差。这种“外部校准”大大提高了参数在实验室之间的精度和一致性。在这里,我们详细介绍了 AUC 中不同数据维度校准所需的步骤。我们演示了使用吸光度和干涉光学检测对三种不同仪器进行校准,并使用 NISTmAb 单体沉降系数的测量来检验一致性。虽然未经校正的测量沉降系数范围很宽,从 6.22 到 6.61 S,但适当的校准导致沉降系数的标准偏差降低了十倍。校准后的相对标准偏差和平均误差分别为 0.2%和 0.07%,与单个仪器中的统计误差和并排重复性相当。