Suppr超能文献

校准分析超速离心机。

Calibrating analytical ultracentrifuges.

机构信息

Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.

出版信息

Eur Biophys J. 2021 May;50(3-4):353-362. doi: 10.1007/s00249-020-01485-2. Epub 2021 Jan 4.

Abstract

Analytical ultracentrifugation (AUC) is based on the concept of recording and analyzing macroscopic macromolecular redistribution that results from a centrifugal force acting on the mass of suspended macromolecules in solution. Since AUC rests on first principles, it can provide an absolute measurement of macromolecular mass, sedimentation and diffusion coefficients, and many other quantities, provided that the solvent density and viscosity are known, and provided that the instrument is properly calibrated. Unfortunately, a large benchmark study revealed that many instruments exhibit very significant systematic errors. This includes the magnification of the optical detection system used to determine migration distance, the measurement of sedimentation time, and the measurement of the solution temperature governing viscosity. We have previously developed reference materials, tools, and protocols to detect and correct for systematic measurement errors in the AUC by comparison with independently calibrated standards. This 'external calibration' resulted in greatly improved precision and consistency of parameters across laboratories. Here we detail the steps required for calibration of the different data dimensions in the AUC. We demonstrate the calibration of three different instruments with absorbance and interference optical detection, and use measurements of the sedimentation coefficient of NISTmAb monomer as a test of consistency. Whereas the measured uncorrected sedimentation coefficients span a wide range from 6.22 to 6.61 S, proper calibration resulted in a tenfold reduced standard deviation of sedimentation coefficients. The calibrated relative standard deviation and mean error of 0.2% and 0.07%, respectively, is comparable with statistical errors and side-by-side repeatability in a single instrument.

摘要

分析超速离心(AUC)基于记录和分析宏观大分子再分配的概念,这是由于离心力作用于溶液中悬浮大分子的质量而产生的。由于 AUC 基于基本原理,因此可以提供大分子质量、沉降和扩散系数以及许多其他量的绝对测量值,前提是已知溶剂密度和粘度,并且仪器经过适当校准。不幸的是,一项大型基准研究表明,许多仪器存在非常显著的系统误差。这包括用于确定迁移距离的光学检测系统的放大倍数、沉降时间的测量以及控制粘度的溶液温度的测量。我们之前已经开发了参考材料、工具和协议,通过与独立校准的标准进行比较,来检测和纠正 AUC 中的系统测量误差。这种“外部校准”大大提高了参数在实验室之间的精度和一致性。在这里,我们详细介绍了 AUC 中不同数据维度校准所需的步骤。我们演示了使用吸光度和干涉光学检测对三种不同仪器进行校准,并使用 NISTmAb 单体沉降系数的测量来检验一致性。虽然未经校正的测量沉降系数范围很宽,从 6.22 到 6.61 S,但适当的校准导致沉降系数的标准偏差降低了十倍。校准后的相对标准偏差和平均误差分别为 0.2%和 0.07%,与单个仪器中的统计误差和并排重复性相当。

相似文献

1
Calibrating analytical ultracentrifuges.
Eur Biophys J. 2021 May;50(3-4):353-362. doi: 10.1007/s00249-020-01485-2. Epub 2021 Jan 4.
2
A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.
PLoS One. 2015 May 21;10(5):e0126420. doi: 10.1371/journal.pone.0126420. eCollection 2015.
3
A radial calibration window for analytical ultracentrifugation.
PLoS One. 2018 Jul 30;13(7):e0201529. doi: 10.1371/journal.pone.0201529. eCollection 2018.
6
Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references.
Anal Biochem. 2013 Sep 1;440(1):81-95. doi: 10.1016/j.ab.2013.05.011. Epub 2013 May 24.
7
A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents.
Biophys Chem. 2004 Mar 1;108(1-3):201-14. doi: 10.1016/j.bpc.2003.10.017.
8
Quantitative Analysis of Protein Self-Association by Sedimentation Velocity.
Curr Protoc Protein Sci. 2020 Sep;101(1):e109. doi: 10.1002/cpps.109.
9
Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation.
Biophys J. 2006 Jun 15;90(12):4651-61. doi: 10.1529/biophysj.106.081372. Epub 2006 Mar 24.
10
Improved measurement of the rotor temperature in analytical ultracentrifugation.
Anal Biochem. 2014 Apr 15;451:69-75. doi: 10.1016/j.ab.2014.02.006. Epub 2014 Feb 14.

本文引用的文献

1
A multiwavelength emission detector for analytical ultracentrifugation.
Nanoscale Adv. 2019 Oct 4;1(11):4422-4432. doi: 10.1039/c9na00487d. eCollection 2019 Nov 5.
3
Quantitative Analysis of Protein Self-Association by Sedimentation Velocity.
Curr Protoc Protein Sci. 2020 Sep;101(1):e109. doi: 10.1002/cpps.109.
4
Resuspending samples in analytical ultracentrifugation.
Anal Biochem. 2020 Sep 1;604:113771. doi: 10.1016/j.ab.2020.113771. Epub 2020 May 11.
7
A radial calibration window for analytical ultracentrifugation.
PLoS One. 2018 Jul 30;13(7):e0201529. doi: 10.1371/journal.pone.0201529. eCollection 2018.
8
The NISTmAb Reference Material 8671 value assignment, homogeneity, and stability.
Anal Bioanal Chem. 2018 Mar;410(8):2127-2139. doi: 10.1007/s00216-017-0800-1. Epub 2018 Feb 7.
9
Advanced Multiwavelength Detection in Analytical Ultracentrifugation.
Anal Chem. 2018 Jan 16;90(2):1280-1291. doi: 10.1021/acs.analchem.7b04056. Epub 2017 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验