Zhao Huaying, Balbo Andrea, Metger Howard, Clary Robert, Ghirlando Rodolfo, Schuck Peter
Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
Bioengineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
Anal Biochem. 2014 Apr 15;451:69-75. doi: 10.1016/j.ab.2014.02.006. Epub 2014 Feb 14.
Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study comparing various analytical ultracentrifuges, we showed that external calibration of the scan time, radial magnification, and temperature is critically important for accurate measurements (Anal. Biochem. 440 (2013) 81-95). To achieve accurate temperature calibration, we introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton) that can be inserted into an ultracentrifugation cell assembly and spun at low rotor speeds. In the current work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allowing for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000rpm. We demonstrated the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration and the reverse process on rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control.
沉降速度法是一种测量生物大分子流体动力学平动摩擦系数的经典方法。在最近一项比较各种分析型超速离心机的研究中,我们表明扫描时间、径向放大倍数和温度的外部校准对于准确测量至关重要(《分析生物化学》440 (2013) 81 - 95)。为了实现精确的温度校准,我们引入了一种自主微型温度记录集成电路(美信集成产品公司的热时标纽扣式温度传感器),它可以插入超速离心池组件并以低转子速度旋转。在当前工作中,我们为位于转子手柄中的温度传感器开发了一种改进的固定器。这样做的优点是不会降低转子容量,并且在高达60,000转/分钟的高速沉降速度实验中能够直接测量旋转转子的温度。我们通过监测转子加速过程中由于转子拉伸导致的绝热冷却以及转子减速时的反向过程,证明了这种方法的灵敏度。基于此,我们开发了一种程序来近似等温转子加速,以实现更好的温度控制。