Suppr超能文献

对癌症患者在感染新型冠状病毒肺炎之前及期间血液学和生化参数的纵向特征分析揭示了与预后相关的特征。

Longitudinal characterisation of haematological and biochemical parameters in cancer patients prior to and during COVID-19 reveals features associated with outcome.

作者信息

Lee R J, Wysocki O, Bhogal T, Shotton R, Tivey A, Angelakas A, Aung T, Banfill K, Baxter M, Boyce H, Brearton G, Copson E, Dickens E, Eastlake L, Gomes F, Hague C, Harrison M, Horsley L, Huddar P, Hudson Z, Khan S, Khan U T, Maynard A, McKenzie H, Palmer D, Robinson T, Rowe M, Thomas A, Tweedy J, Sheehan R, Stockdale A, Weaver J, Williams S, Wilson C, Zhou C, Dive C, Cooksley T, Palmieri C, Freitas A, Armstrong A C

机构信息

The Christie NHS Foundation Trust, Manchester, UK; The University of Manchester, Manchester, UK; Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK.

The University of Manchester, Manchester, UK; Digital Experimental Cancer Medicine Team, Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, UK.

出版信息

ESMO Open. 2021 Feb;6(1):100005. doi: 10.1016/j.esmoop.2020.100005. Epub 2020 Nov 27.

Abstract

BACKGROUND

Cancer patients are at increased risk of death from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cancer and its treatment affect many haematological and biochemical parameters, therefore we analysed these prior to and during coronavirus disease 2019 (COVID-19) and correlated them with outcome.

PATIENTS AND METHODS

Consecutive patients with cancer testing positive for SARS-CoV-2 in centres throughout the United Kingdom were identified and entered into a database following local governance approval. Clinical and longitudinal laboratory data were extracted from patient records. Data were analysed using Mann-Whitney U test, Fisher's exact test, Wilcoxon signed rank test, logistic regression, or linear regression for outcomes. Hierarchical clustering of heatmaps was performed using Ward's method.

RESULTS

In total, 302 patients were included in three cohorts: Manchester (n = 67), Liverpool (n = 62), and UK (n = 173). In the entire cohort (N = 302), median age was 69 (range 19-93 years), including 163 males and 139 females; of these, 216 were diagnosed with a solid tumour and 86 with a haematological cancer. Preinfection lymphopaenia, neutropaenia and lactate dehydrogenase (LDH) were not associated with oxygen requirement (O) or death. Lymphocyte count (P < 0.001), platelet count (P = 0.03), LDH (P < 0.0001) and albumin (P < 0.0001) significantly changed from preinfection to during infection. High rather than low neutrophils at day 0 (P = 0.007), higher maximal neutrophils during COVID-19 (P = 0.026) and higher neutrophil-to-lymphocyte ratio (NLR; P = 0.01) were associated with death. In multivariable analysis, age (P = 0.002), haematological cancer (P = 0.034), C-reactive protein (P = 0.004), NLR (P = 0.036) and albumin (P = 0.02) at day 0 were significant predictors of death. In the Manchester/Liverpool cohort 30 patients have restarted therapy following COVID-19, with no additional complications requiring readmission.

CONCLUSION

Preinfection biochemical/haematological parameters were not associated with worse outcome in cancer patients. Restarting treatment following COVID-19 was not associated with additional complications. Neutropaenia due to cancer/treatment is not associated with COVID-19 mortality. Cancer therapy, particularly in patients with solid tumours, need not be delayed or omitted due to concerns that treatment itself increases COVID-19 severity.

摘要

背景

癌症患者死于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的风险增加。癌症及其治疗会影响许多血液学和生化参数,因此我们在2019冠状病毒病(COVID-19)之前和期间对这些参数进行了分析,并将它们与预后相关联。

患者和方法

在英国各地的中心,连续纳入SARS-CoV-2检测呈阳性的癌症患者,并在获得当地管理部门批准后录入数据库。从患者记录中提取临床和纵向实验室数据。使用Mann-Whitney U检验、Fisher精确检验、Wilcoxon符号秩检验、逻辑回归或线性回归分析预后数据。使用Ward方法对热图进行层次聚类。

结果

总共302例患者被纳入三个队列:曼彻斯特(n = 67)、利物浦(n = 62)和英国(n = 173)。在整个队列(N = 302)中,中位年龄为69岁(范围19 - 93岁),包括163名男性和139名女性;其中,216例被诊断为实体瘤,86例为血液系统癌症。感染前淋巴细胞减少、中性粒细胞减少和乳酸脱氢酶(LDH)与氧气需求(O)或死亡无关。淋巴细胞计数(P < 0.001)、血小板计数(P = 0.03)、LDH(P < 0.0001)和白蛋白(P < 0.0001)从感染前到感染期间有显著变化。第0天中性粒细胞高而非低(P = 0.007)、COVID-19期间最大中性粒细胞较高(P = 0.026)和中性粒细胞与淋巴细胞比值较高(NLR;P = 0.01)与死亡相关。在多变量分析中,第0天的年龄(P = 0.002)、血液系统癌症(P = 0.034)、C反应蛋白(P = 0.004)、NLR(P = 0.036)和白蛋白(P = 0.02)是死亡的显著预测因素。在曼彻斯特/利物浦队列中,30例患者在COVID-19后重新开始治疗,没有需要再次入院的额外并发症。

结论

感染前的生化/血液学参数与癌症患者的不良预后无关。COVID-19后重新开始治疗与额外并发症无关。癌症/治疗引起的中性粒细胞减少与COVID-19死亡率无关。不必因担心治疗本身会增加COVID-19的严重程度而延迟或省略癌症治疗,尤其是实体瘤患者的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/7808077/b28a3b8b7271/gr1.jpg

相似文献

3
Routine laboratory testing to determine if a patient has COVID-19.
Cochrane Database Syst Rev. 2020 Nov 19;11(11):CD013787. doi: 10.1002/14651858.CD013787.
4
Accuracy of routine laboratory tests to predict mortality and deterioration to severe or critical COVID-19 in people with SARS-CoV-2.
Cochrane Database Syst Rev. 2024 Aug 6;8(8):CD015050. doi: 10.1002/14651858.CD015050.pub2.
5
Factors associated with death outcome in patients with severe coronavirus disease-19 (COVID-19): a case-control study.
Int J Med Sci. 2020 May 18;17(9):1281-1292. doi: 10.7150/ijms.46614. eCollection 2020.
6
Prognostic implications of neutrophil-lymphocyte ratio in COVID-19.
Eur J Clin Invest. 2021 Jan;51(1):e13404. doi: 10.1111/eci.13404. Epub 2020 Sep 25.
7
Clinical and Immune Features of Hospitalized Pediatric Patients With Coronavirus Disease 2019 (COVID-19) in Wuhan, China.
JAMA Netw Open. 2020 Jun 1;3(6):e2010895. doi: 10.1001/jamanetworkopen.2020.10895.
8
Preinfection laboratory parameters may predict COVID-19 severity in tumor patients.
Cancer Med. 2021 Jul;10(13):4424-4436. doi: 10.1002/cam4.4023. Epub 2021 Jun 13.

引用本文的文献

1
Using virtual patient cohorts to uncover immune response differences in cancer and immunosuppressed COVID-19 patients.
PLoS Comput Biol. 2025 Jun 9;21(6):e1013170. doi: 10.1371/journal.pcbi.1013170.
6
COVID-19 in patients with cancer: first report of the ESMO international, registry-based, cohort study (ESMO-CoCARE).
ESMO Open. 2022 Jun;7(3):100499. doi: 10.1016/j.esmoop.2022.100499. Epub 2022 May 8.
9
The role of inflammatory indices in the outcome of COVID-19 cancer patients.
Med Oncol. 2021 Nov 8;39(1):6. doi: 10.1007/s12032-021-01605-8.

本文引用的文献

1
Determinants of the outcomes of patients with cancer infected with SARS-CoV-2: results from the Gustave Roussy cohort.
Nat Cancer. 2020 Oct;1(10):965-975. doi: 10.1038/s43018-020-00120-5. Epub 2020 Sep 22.
3
A neutrophil activation signature predicts critical illness and mortality in COVID-19.
Blood Adv. 2021 Mar 9;5(5):1164-1177. doi: 10.1182/bloodadvances.2020003568.
4
Mortality in patients with cancer and coronavirus disease 2019: A systematic review and pooled analysis of 52 studies.
Eur J Cancer. 2020 Nov;139:43-50. doi: 10.1016/j.ejca.2020.08.011. Epub 2020 Sep 2.
5
Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19.
Sci Immunol. 2020 Sep 17;5(51). doi: 10.1126/sciimmunol.abd6197.
7
Factors associated with COVID-19-related death using OpenSAFELY.
Nature. 2020 Aug;584(7821):430-436. doi: 10.1038/s41586-020-2521-4. Epub 2020 Jul 8.
8
Immune-Inflammatory Parameters in COVID-19 Cases: A Systematic Review and Meta-Analysis.
Front Med (Lausanne). 2020 Jun 9;7:301. doi: 10.3389/fmed.2020.00301. eCollection 2020.
9
Immunology of COVID-19: Current State of the Science.
Immunity. 2020 Jun 16;52(6):910-941. doi: 10.1016/j.immuni.2020.05.002. Epub 2020 May 6.
10
COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study.
Lancet. 2020 Jun 20;395(10241):1919-1926. doi: 10.1016/S0140-6736(20)31173-9. Epub 2020 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验