Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India.
Microb Pathog. 2021 Jan;150:104728. doi: 10.1016/j.micpath.2020.104728. Epub 2021 Jan 2.
Dengue viral disease has been reported as an Aedes aegypti mosquito-borne human disease and causing a severe global public health concern. In this study, immunoinformatics methods was deployed for crafting CTL T-cell epitopes as dengue vaccine candidates. The NS1 protein sequence of dengue serotype 1 strain retrieved from the protein database and T-cell epitopes (n = 85) were predicted by the artificial neural network. The conserved epitopes (n = 10) were predicted and selected for intensive computational analysis. The machine learning technique and quantitative matrix-based toxicity analysis assured nontoxic peptide selection. Hidden Markov Model derived Structural Alphabet (SA) based algorithm predicted the 3D molecular structure and all-atom structure of peptide ligand validated by Ramachandran-plot. Three-tier molecular docking approaches were used to predictthe peptide - HLA docking complex. Molecular dynamics (MD) simulation study confirmed the docking complex was stable in the time frame of 100ns. Population coverage analysis predicted the interaction epitope interaction with a particular population of HLA. These results concluded that the computationally designed HTLWSNGVL and FTTNIWLKL epitope peptides could be used as putative agents for the multi CTL T cell epitope vaccine. The vaccine protein sequence expression and translation were analyzed in the prokaryotic vector adapted by codon usage. Such in silico formulated CTL T-cell-based prophylactic vaccines could encourage the commercial development of dengue vaccines.
登革热病毒病已被报道为一种埃及伊蚊传播的人类疾病,引起了严重的全球公共卫生关注。在这项研究中,免疫信息学方法被用于构建 CTL T 细胞表位作为登革热疫苗候选物。从蛋白质数据库中检索到的登革热血清型 1 株 NS1 蛋白序列,并通过人工神经网络预测了 T 细胞表位(n=85)。预测和选择保守表位(n=10)进行了强化计算分析。机器学习技术和基于定量矩阵的毒性分析确保了非毒性肽的选择。基于隐马尔可夫模型的衍生结构字母(SA)算法预测了肽配体的 3D 分子结构和全原子结构,并通过 Ramachandran 图进行验证。采用三层分子对接方法预测肽-HLA 对接复合物。分子动力学(MD)模拟研究证实,对接复合物在 100ns 的时间范围内是稳定的。群体覆盖分析预测了与特定 HLA 群体的相互作用表位相互作用。这些结果表明,计算设计的 HTLWSNGVL 和 FTTNIWLKL 表位肽可作为多 CTL T 细胞表位疫苗的候选药物。疫苗蛋白序列的表达和翻译在适应密码子用法的原核载体中进行了分析。这种基于 CTL T 细胞的计算机配方预防性疫苗可以促进登革热疫苗的商业开发。