Suppr超能文献

利用磁倾角的连续测量进行远距离跨赤道导航。

Long-distance transequatorial navigation using sequential measurements of magnetic inclination angle.

作者信息

Taylor Brian K, Lohmann Kenneth J, Havens Luke T, Lohmann Catherine M F, Granger Jesse

机构信息

Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Department of Biology, Duke University, Durham, NC, USA.

出版信息

J R Soc Interface. 2021 Jan;18(174):20200887. doi: 10.1098/rsif.2020.0887. Epub 2021 Jan 6.

Abstract

Diverse taxa use Earth's magnetic field in combination with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. Several animals have the ability to use the inclination or tilt of magnetic field lines as a component of a magnetic compass sense that can be used to maintain migratory headings. In addition, a few animals are able to distinguish among different inclination angles and, in effect, exploit inclination as a surrogate for latitude. Little is known, however, about the role that magnetic inclination plays in guiding long-distance migrations. In this paper, we use an agent-based modelling approach to investigate whether an artificial agent can successfully execute a series of transequatorial migrations by using sequential measurements of magnetic inclination. The agent was tested with multiple navigation strategies in both present-day and reversed magnetic fields. The findings (i) demonstrate that sequential inclination measurements can enable migrations between the northern and southern hemispheres, and (ii) demonstrate that an inclination-based strategy can tolerate a reversed magnetic field, which could be useful in the development of autonomous engineered systems that must be robust to magnetic field changes. The findings also appear to be consistent with the results of some animal navigation experiments, although whether any animal exploits a strategy of using sequential measurements of inclination remains unknown.

摘要

不同的生物类群结合其他感官方式利用地球磁场来完成从本地归巢到跨大陆和海洋盆地的长距离迁徙等各种导航任务。几种动物能够将磁场线的倾角或倾斜度用作磁罗盘感知的一个组成部分,以此来维持迁徙方向。此外,一些动物能够区分不同的倾斜角度,实际上是将倾斜度用作纬度的替代指标。然而,关于磁倾角在引导长距离迁徙中所起的作用,我们知之甚少。在本文中,我们采用基于智能体的建模方法来研究一个人工智能体能否通过依次测量磁倾角成功执行一系列跨赤道迁徙。该智能体在现代磁场和反转磁场中都采用了多种导航策略进行测试。研究结果(i)表明,依次测量倾斜度能够实现南北半球之间的迁徙,(ii)表明基于倾斜度的策略能够耐受反转磁场,这对于开发必须对磁场变化具有鲁棒性的自主工程系统可能有用。这些发现似乎也与一些动物导航实验的结果一致,不过是否有任何动物采用依次测量倾斜度的策略仍不清楚。

相似文献

1
Long-distance transequatorial navigation using sequential measurements of magnetic inclination angle.
J R Soc Interface. 2021 Jan;18(174):20200887. doi: 10.1098/rsif.2020.0887. Epub 2021 Jan 6.
2
Bioinspired magnetoreception and navigation in nonorthogonal environments using magnetic signatures.
Bioinspir Biomim. 2019 Sep 24;14(6):066009. doi: 10.1088/1748-3190/ab40f8.
3
Bioinspired magnetoreception and navigation using magnetic signatures as waypoints.
Bioinspir Biomim. 2018 May 15;13(4):046003. doi: 10.1088/1748-3190/aabbec.
4
Sensation to navigation: a computational neuroscience approach to magnetic field navigation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):167-176. doi: 10.1007/s00359-021-01535-w. Epub 2022 Jan 31.
5
Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination.
J Exp Biol. 2015 Jan 15;218(Pt 2):206-11. doi: 10.1242/jeb.107235. Epub 2014 Dec 1.
6
Navigation by magnetic signatures in a realistic model of Earth's magnetic field.
Bioinspir Biomim. 2024 Mar 18;19(3). doi: 10.1088/1748-3190/ad3120.
8
Magnetoreception and magnetic navigation in fishes: a half century of discovery.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):19-40. doi: 10.1007/s00359-021-01527-w. Epub 2022 Jan 15.
9
Magnetic maps in animal navigation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):41-67. doi: 10.1007/s00359-021-01529-8. Epub 2022 Jan 9.
10
Uncovering how animals use combinations of magnetic field properties to navigate: a computational approach.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):155-166. doi: 10.1007/s00359-021-01523-0. Epub 2021 Nov 24.

引用本文的文献

1
Neuromorphic encoding strategies for a noisy magnetic sense.
J R Soc Interface. 2025 Jun;22(227):20240810. doi: 10.1098/rsif.2024.0810. Epub 2025 Jun 18.
2
Uncovering loggerhead () navigation strategy in the open ocean through the consideration of their diving behaviour.
J R Soc Interface. 2023 Dec;20(209):20230383. doi: 10.1098/rsif.2023.0383. Epub 2023 Dec 13.
3
Sensation to navigation: a computational neuroscience approach to magnetic field navigation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):167-176. doi: 10.1007/s00359-021-01535-w. Epub 2022 Jan 31.
4
Modelling collective navigation via non-local communication.
J R Soc Interface. 2021 Sep;18(182):20210383. doi: 10.1098/rsif.2021.0383. Epub 2021 Sep 29.

本文引用的文献

1
On the origin of microbial magnetoreception.
Natl Sci Rev. 2020 Feb;7(2):472-479. doi: 10.1093/nsr/nwz065. Epub 2019 May 21.
2
Animal navigation: a noisy magnetic sense?
J Exp Biol. 2020 Sep 23;223(Pt 18):jeb164921. doi: 10.1242/jeb.164921.
3
Natal imprinting to the Earth's magnetic field in a pelagic seabird.
Curr Biol. 2020 Jul 20;30(14):2869-2873.e2. doi: 10.1016/j.cub.2020.05.039. Epub 2020 Jun 18.
4
Bioinspired magnetoreception and navigation in nonorthogonal environments using magnetic signatures.
Bioinspir Biomim. 2019 Sep 24;14(6):066009. doi: 10.1088/1748-3190/ab40f8.
5
There and back again: natal homing by magnetic navigation in sea turtles and salmon.
J Exp Biol. 2019 Feb 6;222(Pt Suppl 1):jeb184077. doi: 10.1242/jeb.184077.
6
The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth.
Curr Biol. 2018 Jul 9;28(13):2160-2166.e5. doi: 10.1016/j.cub.2018.05.030. Epub 2018 Jun 21.
7
Bioinspired magnetoreception and navigation using magnetic signatures as waypoints.
Bioinspir Biomim. 2018 May 15;13(4):046003. doi: 10.1088/1748-3190/aabbec.
8
Disruption of Magnetic Compass Orientation in Migratory Birds by Radiofrequency Electromagnetic Fields.
Biophys J. 2017 Oct 3;113(7):1475-1484. doi: 10.1016/j.bpj.2017.07.031.
9
Bioinspired magnetic reception and multimodal sensing.
Biol Cybern. 2017 Aug;111(3-4):287-308. doi: 10.1007/s00422-017-0720-3. Epub 2017 Jun 22.
10
Mantisbot is a robotic model of visually guided motion in the praying mantis.
Arthropod Struct Dev. 2017 Sep;46(5):736-751. doi: 10.1016/j.asd.2017.03.001. Epub 2017 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验