Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
Nat Commun. 2023 Jul 24;14(1):4452. doi: 10.1038/s41467-023-40142-y.
Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their terminal bouton number and activity. We term this compensation as cross-neuron plasticity, and in this study, we demonstrate that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required for cross-neuron plasticity. Overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. In addition, we find that functional cross-neuron plasticity can be induced at different developmental stages. Our work uncovers a role for Draper signaling in cross-neuron plasticity and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.
神经元死亡和随后的大脑功能障碍是衰老和神经退行性变的标志,但附近健康神经元(旁观者)如何对其邻居的死亡做出反应尚不完全清楚。在果蝇幼虫的神经肌肉系统中,旁观者运动神经元可以通过增加其末端末梢的数量和活性,在结构和功能上补偿其邻居的丧失。我们将这种补偿称为跨神经元可塑性,在本研究中,我们证明了果蝇吞噬受体 Draper 和相关激酶 Shark 对于跨神经元可塑性是必需的。Draper-I 异构体的过表达增强了跨神经元可塑性,这意味着可塑性的强度与 Draper 信号相关。此外,我们发现功能性跨神经元可塑性可以在不同的发育阶段被诱导。我们的工作揭示了 Draper 信号在跨神经元可塑性中的作用,并提供了关于健康旁观者神经元如何对其相邻神经元的丧失做出反应的见解。