Department of Neurobiology, University of Southern California, Los Angeles, United States.
Oak Crest Institute of Science, Monrovia, United States.
Elife. 2022 Aug 22;11:e77924. doi: 10.7554/eLife.77924.
In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like Is and weak tonic-like Ib, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs. phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.
在发育和成熟的神经系统中,不同的神经元亚型支配着共同的靶标,以建立、维持和修饰神经回路功能。理解神经回路的结构和功能架构的主要挑战是分离这些输入,并确定它们的内在和异突触关系。幼虫的神经肌肉接头是研究这些问题的有力模型系统,在这里,两个谷氨酸能运动神经元,即强的快脉冲样 Is 和弱的持续样 Ib,共同支配单个肌肉靶标以协调运动行为。然而,每个输入的完整神经传递从未在电生理学上被分离过。我们采用了一种肉毒杆菌神经毒素 BoNT-C,它可以消除自发和诱发的神经传递,而不会干扰突触的生长或结构,从而首次实现了准确分离输入特异性神经传递的方法。BoNT-C 在 Is 或 Ib 运动神经元中的选择性表达可以明确区分每个输入的功能特性。重要的是,每个输入的离体生理学可以完全再现 Is+Ib 神经传递的混合值。最后,BoNT-C 的选择性沉默不会在会聚输入处诱导异突触结构或功能可塑性。因此,BoNT-C 建立了第一个准确分离紧张型与快脉冲型神经元之间神经传递的方法,并定义了一个强大的谷氨酸能回路中的异突触可塑性规则。