Suppr超能文献

胎盘滋养层合胞体通过 mTOR 信号促进巨胞饮作用,以适应氨基酸供应减少。

Placental trophoblast syncytialization potentiates macropinocytosis via mTOR signaling to adapt to reduced amino acid supply.

机构信息

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.

Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 100101 Beijing, China.

出版信息

Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2017092118.

Abstract

During pregnancy, the appropriate allocation of nutrients between the mother and the fetus is dominated by maternal-fetal interactions, which is primarily governed by the placenta. The syncytiotrophoblast (STB) lining at the outer surface of the placental villi is directly bathed in maternal blood and controls feto-maternal exchange. The STB is the largest multinucleated cell type in the human body, and is formed through syncytialization of the mononucleated cytotrophoblast. However, the physiological advantage of forming such an extensively multinucleated cellular structure remains poorly understood. Here, we discover that the STB uniquely adapts to nutrient stress by inducing the macropinocytosis machinery through repression of mammalian target of rapamycin (mTOR) signaling. In primary human trophoblasts and in trophoblast cell lines, differentiation toward a syncytium triggers macropinocytosis, which is greatly enhanced during amino acid shortage, induced by inhibiting mTOR signaling. Moreover, inhibiting mTOR in pregnant mice markedly stimulates macropinocytosis in the syncytium. Blocking macropinocytosis worsens the phenotypes of fetal growth restriction caused by mTOR-inhibition. Consistently, placentas derived from fetal growth restriction patients display: 1) Repressed mTOR signaling, 2) increased syncytialization, and 3) enhanced macropinocytosis. Together, our findings suggest that the unique ability of STB to undergo macropinocytosis serves as an essential adaptation to the cellular nutrient status, and support fetal survival and growth under nutrient deprivation.

摘要

在妊娠期间,母体和胎儿之间的营养物质分配由母体-胎儿相互作用主导,而这主要由胎盘控制。胎盘绒毛外表面的合体滋养层(STB)直接浸泡在母体血液中,并控制胎-母交换。STB 是人体中最大的多核细胞类型,通过单核滋养细胞的合胞体化形成。然而,形成这种广泛多核细胞结构的生理优势仍知之甚少。在这里,我们发现 STB 通过抑制哺乳动物雷帕霉素靶蛋白(mTOR)信号通路诱导巨胞饮机制来适应营养应激。在原代人滋养层细胞和滋养层细胞系中,向合胞体的分化触发巨胞饮作用,在 mTOR 信号通路抑制诱导的氨基酸缺乏时,巨胞饮作用大大增强。此外,在怀孕小鼠中抑制 mTOR 会显著刺激合胞体中的巨胞饮作用。阻断巨胞饮作用会加重由 mTOR 抑制引起的胎儿生长受限的表型。一致地,来自胎儿生长受限患者的胎盘显示:1)mTOR 信号受抑制,2)合胞体化增加,3)巨胞饮作用增强。总之,我们的研究结果表明,STB 进行巨胞饮作用的独特能力是对细胞营养状态的重要适应,支持在营养剥夺下胎儿的存活和生长。

相似文献

3
TFEB safeguards trophoblast syncytialization in humans and mice.TFEB 可保护人类和小鼠滋养层细胞的融合。
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2404062121. doi: 10.1073/pnas.2404062121. Epub 2024 Jul 5.
5
Placental regulation of fetal nutrient supply.胎盘对胎儿营养供应的调节。
Curr Opin Clin Nutr Metab Care. 2013 May;16(3):292-7. doi: 10.1097/MCO.0b013e32835e3674.

引用本文的文献

3
The human placenta and its role in reproductive outcomes revisited.重新审视人类胎盘及其在生殖结局中的作用。
Physiol Rev. 2025 Oct 1;105(4):2305-2376. doi: 10.1152/physrev.00039.2024. Epub 2025 Jun 11.
5
Placental Development and Pregnancy-Associated Diseases.胎盘发育与妊娠相关疾病
Matern Fetal Med. 2021 Dec 14;4(1):36-51. doi: 10.1097/FM9.0000000000000134. eCollection 2022 Jan.

本文引用的文献

6
Single-cell reconstruction of the early maternal-fetal interface in humans.人类早期母胎界面的单细胞重建。
Nature. 2018 Nov;563(7731):347-353. doi: 10.1038/s41586-018-0698-6. Epub 2018 Nov 14.
9
AMPK: Sensing Glucose as well as Cellular Energy Status.AMPK:感知葡萄糖和细胞能量状态。
Cell Metab. 2018 Feb 6;27(2):299-313. doi: 10.1016/j.cmet.2017.10.009. Epub 2017 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验