Suppr超能文献

利用功能连接预测轻度中风后的长期认知功能

Prediction of Long-term Cognitive Function After Minor Stroke Using Functional Connectivity.

作者信息

Lopes Renaud, Bournonville Clément, Kuchcinski Grégory, Dondaine Thibaut, Mendyk Anne-Marie, Viard Romain, Pruvo Jean-Pierre, Hénon Hilde, Georgakis Marios K, Duering Marco, Dichgans Martin, Cordonnier Charlotte, Leclerc Xavier, Bordet Régis

机构信息

From U1172-LilNCog-Lille Neuroscience & Cognition (R.L., C.B., G.K., T.D., A.-M.M., J.-P.P., H.H., C.C., X.L., R.B.) and Institut Pasteur de Lille, US 41-UMS 2014-PLBS, CNRS (R.L., C.B., G.K., R.V., J.-P.P., X.L.), CHU Lille, Inserm, Université de Lille, France; and Institute for Stroke and Dementia Research (M.K.G., M. Duering, M. Dichgans), LMU Munich University Hospital, Germany.

出版信息

Neurology. 2021 Feb 22;96(8):e1167-e1179. doi: 10.1212/WNL.0000000000011452.

Abstract

OBJECTIVE

To determine whether functional MRI connectivity can predict long-term cognitive function 36 months after minor stroke.

METHODS

Seventy-two participants with first-ever stroke were included at baseline and followed up for 36 months. A ridge regression machine learning algorithm was developed and used to predict cognitive scores 36 months poststroke on the basis of the functional networks measured using MRI at 6 months (referred to here as the poststroke cognitive impairment [PSCI] network). The prediction accuracy was evaluated in 4 domains (memory, attention/executive, language, and visuospatial functions) and compared with clinical data and other functional networks. The models' statistical significance was probed with permutation tests. The potential involvement of cortical atrophy was assessed 6 months poststroke. A second, independent dataset (n = 40) was used to validate the results and assess their generalizability.

RESULTS

Based on the PSCI network, a machine learning model was able to predict memory, attention, visuospatial functions, and language functions 36 months poststroke ( : 0.67, 0.73, 0.55, and 0.48, respectively). The PSCI-based model was at least as accurate as models based on other functional networks or clinical data. Specific patterns were demonstrated for the 4 cognitive domains, with involvement of the left superior frontal cortex for memory, attention, and visuospatial functions. The cortical thickness 6 months poststroke was not correlated with cognitive function 36 months poststroke. The independent validation dataset gave similar results.

CONCLUSIONS

A machine learning model based on the PSCI network can predict long-term cognitive outcome after stroke.

摘要

目的

确定功能磁共振成像(fMRI)连接性是否能够预测轻度中风后36个月的长期认知功能。

方法

72名首次发生中风的参与者在基线时被纳入研究,并随访36个月。开发了一种岭回归机器学习算法,并用于根据6个月时使用MRI测量的功能网络(在此称为中风后认知障碍[PSCI]网络)预测中风后36个月的认知得分。在4个领域(记忆、注意力/执行功能、语言和视觉空间功能)评估预测准确性,并与临床数据和其他功能网络进行比较。通过置换检验探究模型的统计学意义。在中风后6个月评估皮质萎缩的潜在影响。使用第二个独立数据集(n = 40)验证结果并评估其普遍性。

结果

基于PSCI网络,机器学习模型能够预测中风后36个月的记忆、注意力、视觉空间功能和语言功能(分别为:0.67、0.73、0.55和0.48)。基于PSCI的模型至少与基于其他功能网络或临床数据的模型一样准确。4个认知领域呈现出特定模式,左侧额上回参与记忆、注意力和视觉空间功能。中风后6个月的皮质厚度与中风后36个月的认知功能无关。独立验证数据集给出了相似的结果。

结论

基于PSCI网络的机器学习模型可以预测中风后的长期认知结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验