Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, South Korea.
Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, South Korea.
Alzheimers Res Ther. 2023 Aug 31;15(1):147. doi: 10.1186/s13195-023-01289-4.
BACKGROUND AND OBJECTIVES: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI after stroke. METHODS: This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. The primary outcome was PSCI at 3-6 months, defined as an adjusted z-score of less than - 2.0 standard deviation in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean version of the Vascular Cognitive Impairment Harmonization Standards-Neuropsychological Protocol (VCIHS-NP). We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, and artificial neural network) and compared their accuracies for outcome variables. RESULTS: A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, respectively) among the four models for predicting PSCI according to the VCIHS-NP definition. The most important features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke severity, stroke history, and strategic lesion infarcts. CONCLUSION: Our findings indicate that machine-learning algorithms, particularly the extreme gradient boost and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.
背景与目的:卒中后认知障碍(PSCI)在急性缺血性卒中(AIS)患者中发生率高达 50%。因此,预测 AIS 患者的认知结局可能有助于治疗决策。本 PSCI 队列研究旨在确定机器学习方法在预测卒中后 PSCI 中的适用性。
方法:本回顾性研究使用了 AIS 患者前瞻性 PSCI 队列。分析中包括先前已知与 PSCI 相关的人口统计学特征、临床特征和脑影像学变量。主要结局为 3-6 个月时的 PSCI,定义为至少一个认知领域(记忆、执行/额叶、视空间和语言)的调整后 z 评分小于-2.0 标准差,使用韩国版血管性认知障碍协调标准-神经心理协议(VCIHS-NP)。我们开发了四种机器学习模型(逻辑回归、支持向量机、极端梯度提升和人工神经网络),并比较了它们对结局变量的准确性。
结果:本研究共纳入 951 例 AIS 患者(平均年龄 65.7±11.9;男性 61.5%)。根据 VCIHS-NP 定义,在预测 PSCI 方面,极端梯度提升和人工神经网络的曲线下面积最高(分别为 0.7919 和 0.7365)。预测 PSCI 的最重要特征包括皮质梗死、内侧颞叶萎缩、初始卒中严重程度、卒中史和策略性梗死。
结论:我们的研究结果表明,机器学习算法,特别是极端梯度提升和人工神经网络模型,可最佳预测缺血性卒中后的认知结局。
Alzheimers Res Ther. 2023-8-31
Aging (Albany NY). 2021-9-10
Oxid Med Cell Longev. 2021
Vis Comput Ind Biomed Art. 2025-9-1
Sci Robot. 2019-12-18
J Clin Epidemiol. 2020-6
J Diabetes Complications. 2018-3-29