文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习预测急性缺血性脑卒中后认知障碍。

Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning.

机构信息

Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, South Korea.

Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, South Korea.

出版信息

Alzheimers Res Ther. 2023 Aug 31;15(1):147. doi: 10.1186/s13195-023-01289-4.


DOI:10.1186/s13195-023-01289-4
PMID:37653560
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10468853/
Abstract

BACKGROUND AND OBJECTIVES: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI after stroke. METHODS: This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. The primary outcome was PSCI at 3-6 months, defined as an adjusted z-score of less than - 2.0 standard deviation in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean version of the Vascular Cognitive Impairment Harmonization Standards-Neuropsychological Protocol (VCIHS-NP). We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, and artificial neural network) and compared their accuracies for outcome variables. RESULTS: A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, respectively) among the four models for predicting PSCI according to the VCIHS-NP definition. The most important features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke severity, stroke history, and strategic lesion infarcts. CONCLUSION: Our findings indicate that machine-learning algorithms, particularly the extreme gradient boost and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.

摘要

背景与目的:卒中后认知障碍(PSCI)在急性缺血性卒中(AIS)患者中发生率高达 50%。因此,预测 AIS 患者的认知结局可能有助于治疗决策。本 PSCI 队列研究旨在确定机器学习方法在预测卒中后 PSCI 中的适用性。

方法:本回顾性研究使用了 AIS 患者前瞻性 PSCI 队列。分析中包括先前已知与 PSCI 相关的人口统计学特征、临床特征和脑影像学变量。主要结局为 3-6 个月时的 PSCI,定义为至少一个认知领域(记忆、执行/额叶、视空间和语言)的调整后 z 评分小于-2.0 标准差,使用韩国版血管性认知障碍协调标准-神经心理协议(VCIHS-NP)。我们开发了四种机器学习模型(逻辑回归、支持向量机、极端梯度提升和人工神经网络),并比较了它们对结局变量的准确性。

结果:本研究共纳入 951 例 AIS 患者(平均年龄 65.7±11.9;男性 61.5%)。根据 VCIHS-NP 定义,在预测 PSCI 方面,极端梯度提升和人工神经网络的曲线下面积最高(分别为 0.7919 和 0.7365)。预测 PSCI 的最重要特征包括皮质梗死、内侧颞叶萎缩、初始卒中严重程度、卒中史和策略性梗死。

结论:我们的研究结果表明,机器学习算法,特别是极端梯度提升和人工神经网络模型,可最佳预测缺血性卒中后的认知结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/dab951b6bec1/13195_2023_1289_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/7b8e9b42b343/13195_2023_1289_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/d31645439b9f/13195_2023_1289_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/1a3fcf379a51/13195_2023_1289_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/dab951b6bec1/13195_2023_1289_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/7b8e9b42b343/13195_2023_1289_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/d31645439b9f/13195_2023_1289_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/1a3fcf379a51/13195_2023_1289_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c82/10468853/dab951b6bec1/13195_2023_1289_Fig4_HTML.jpg

相似文献

[1]
Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning.

Alzheimers Res Ther. 2023-8-31

[2]
Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts.

Lancet Neurol. 2021-6

[3]
Post-stroke cognitive impairment remains highly prevalent and disabling despite state-of-the-art stroke treatment.

Int J Stroke. 2024-10

[4]
Network impact score is an independent predictor of post-stroke cognitive impairment: A multicenter cohort study in 2341 patients with acute ischemic stroke.

Neuroimage Clin. 2022

[5]
Development and validation of a clinical model (DREAM-LDL) for post-stroke cognitive impairment at 6 months.

Aging (Albany NY). 2021-9-10

[6]
Association between Geriatric Nutritional Risk Index and Post-Stroke Cognitive Outcomes.

Nutrients. 2021-5-23

[7]
Sex Differences in Poststroke Cognitive Impairment: A Multicenter Study in 2343 Patients With Acute Ischemic Stroke.

Stroke. 2023-9

[8]
Serum Galectin-3 as a Potential Predictive Biomarker Is Associated with Poststroke Cognitive Impairment.

Oxid Med Cell Longev. 2021

[9]
Plasma Endostatin Levels at Acute Phase of Ischemic Stroke Are Associated with Post-Stroke Cognitive Impairment.

Neurotox Res. 2020-2-8

[10]
Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients.

Brain Sci. 2021-5-11

引用本文的文献

[1]
Multimodal dynamic hierarchical clustering model for post-stroke cognitive impairment prediction.

Vis Comput Ind Biomed Art. 2025-9-1

[2]
Predicting cognitive decline in cognitively impaired patients with ischemic stroke with high risk of cerebral hemorrhage: a machine learning approach.

Front Neurol. 2025-7-25

[3]
Development and validation of a nomogram for predicting the risk of cognitive impairment among chronic obstructive pulmonary diseases.

Ann Med. 2025-12

[4]
Development of a Diagnostic Prediction Model for Post-Stroke Cognitive Impairment in Acute Large Vessel Occlusion Stroke Using Multimodal MRI and PET/CT: A Study Protocol.

Brain Behav. 2025-6

[5]
Glymphatic dysfunction as a biomarker for post-stroke cognitive impairment.

Sci Rep. 2025-6-3

[6]
Association between the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and cognitive impairment in patients with acute mild ischemic stroke.

Eur J Med Res. 2025-5-30

[7]
Accuracy of Machine Learning in Predicting Post-Stroke Depression: A Systematic Review and Meta-Analysis.

Brain Behav. 2025-5

[8]
Stroke prediction in elderly patients with atrial fibrillation using machine learning combined clinical and left atrial appendage imaging phenotypic features.

BMC Cardiovasc Disord. 2025-5-24

[9]
A Combined-Mode Machine Learning Model for Predicting Stroke Recurrence During Hospitalization in Patients with Acute Minor Ischemic Stroke.

MedComm (2020). 2025-5-19

[10]
Protocol for detection and monitoring of post-stroke cognitive impairment through AI-powered speech analysis: a mixed methods pilot study.

Front Aging Neurosci. 2025-5-1

本文引用的文献

[1]
Post-Stroke Cognitive Impairment: Pathophysiological Insights into Brain Disconnectome from Advanced Neuroimaging Analysis Techniques.

J Stroke. 2021-9

[2]
European Stroke Organisation and European Academy of Neurology joint guidelines on post-stroke cognitive impairment.

Eur J Neurol. 2021-12

[3]
Differential effects of body mass index on domain-specific cognitive outcomes after stroke.

Sci Rep. 2021-7-8

[4]
Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients.

Brain Sci. 2021-5-11

[5]
XAI-Explainable artificial intelligence.

Sci Robot. 2019-12-18

[6]
Logistic regression was as good as machine learning for predicting major chronic diseases.

J Clin Epidemiol. 2020-6

[7]
Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups.

Neurology. 2019-11-11

[8]
Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke.

Stroke. 2019-5

[9]
Neuroimaging Determinants of Poststroke Cognitive Performance.

Stroke. 2018-11

[10]
Effects of glycemic variability and hyperglycemia in acute ischemic stroke on post-stroke cognitive impairments.

J Diabetes Complications. 2018-3-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索