Li Junhao, Luo Yuding, Liu Pingchuan, Zhang Jiali, Duan Chuanxi, Xiong Hai, Li Maoxia, Zhang Binyang, Li Lu, Gong Lulu, Niu Yupeng, Zheng Bo, Wang Jian
Department of Neurology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
Department of Neurology, Ya'an People's Hospital, Ya'an, China.
Brain Behav. 2025 Jun;15(6):e70613. doi: 10.1002/brb3.70613.
Stroke is a leading cause of morbidity and disability worldwide. Post-stroke cognitive impairment (PSCI) significantly affects long-term prognosis in acute anterior circulation large-vessel occlusion stroke (LVO-AIS). This study aims to develop a PSCI prediction model integrating multimodal imaging, demographic, and clinical data collected during hospitalization.
This single-center, prospective cohort study will enroll 379 anterior circulation LVO-AIS patients undergoing emergency endovascular treatment (EVT) within 24 h of symptom onset. Participants will be categorized into PSCI and non-PSCI groups and followed up at 90 and 180 days post-procedure. Primary outcomes include Montreal Cognitive Assessment scores at 3 and 6 months, with the modified Rankin Scale as a secondary outcome. Baseline imaging data will be processed using 3D Slicer for MRI and PET/CT standardization, registration, and feature extraction. Machine learning models will be developed using these imaging features combined with demographic and clinical data and evaluated via metrics such as the area under the receiver operating characteristic curve, precision, and recall. Analyses will be conducted in a blinded manner.
This study will develop a PSCI prediction model based on multimodal imaging and clinical data in EVT-treated LVO-AIS patients, providing a tool for early diagnosis and personalized interventions. While limited to a single-center, future multicenter validation is necessary to establish its generalizability and clinical utility.
中风是全球发病和致残的主要原因。中风后认知障碍(PSCI)显著影响急性前循环大血管闭塞性中风(LVO-AIS)的长期预后。本研究旨在开发一种整合住院期间收集的多模态成像、人口统计学和临床数据的PSCI预测模型。
这项单中心前瞻性队列研究将纳入379例症状发作后24小时内接受紧急血管内治疗(EVT)的前循环LVO-AIS患者。参与者将被分为PSCI组和非PSCI组,并在术后90天和180天进行随访。主要结局包括3个月和6个月时的蒙特利尔认知评估得分,改良Rankin量表作为次要结局。基线成像数据将使用3D Slicer进行处理,以实现MRI和PET/CT的标准化、配准和特征提取。将使用这些成像特征结合人口统计学和临床数据开发机器学习模型,并通过受试者操作特征曲线下面积、精度和召回率等指标进行评估。分析将以盲法进行。
本研究将基于接受EVT治疗的LVO-AIS患者的多模态成像和临床数据开发PSCI预测模型,为早期诊断和个性化干预提供工具。虽然本研究限于单中心,但未来有必要进行多中心验证以确定其普遍性和临床实用性。