Department of Biology, Faculty of Science, Albaha Province, Albaha University, Albaha, 65527, Saudi Arabia.
Planta. 2021 Jan 5;253(1):24. doi: 10.1007/s00425-020-03550-8.
Previous studies on engineering osmoprotectant metabolic pathway genes focused on the performance of transgenic plants under salt stress conditions rather than elucidating the underlying mechanism(s), and hence, the mechanism(s) remain(s) unclear. Salt stress negatively impacts agricultural crop yields. Hence, to meet future food demands, it is essential to generate salt stress-resistant varieties. Although traditional breeding has improved salt tolerance in several crops, this approach remains inadequate due to the low genetic diversity of certain important crop cultivars. Genetic engineering is used to introduce preferred gene(s) from any genetic reserve or to modify the expression of the existing gene(s) responsible for salt stress response or tolerance, thereby leading to improved salt tolerance in plants. Although plants naturally produce osmoprotectants as an adaptive mechanism for salt stress tolerance, they offer only partial protection. Recently, progress has been made in the identification and characterization of genes involved in the biosynthetic pathways of osmoprotectants. Exogenous application of these osmoprotectants, and genetic engineering of enzymes in their biosynthetic pathways, have been reported to enhance salt tolerance in different plants. However, no clear mechanistic model exists to explain how osmoprotectant accumulation in transgenic plants confers salt tolerance. This review critically examines the results obtained thus far for elucidating the underlying mechanisms of osmoprotectants for improved salt tolerance, and thus, crop yield stability under salt stress conditions, through the genetic engineering of trehalose, glycinebetaine, and proline metabolic pathway genes.
先前关于工程渗透保护剂代谢途径基因的研究主要集中在转基因植物在盐胁迫条件下的表现,而不是阐明其潜在机制,因此,其机制仍不清楚。盐胁迫会对农业作物产量产生负面影响。因此,为了满足未来的粮食需求,必须培育耐盐品种。尽管传统的育种方法已经提高了几种作物的耐盐性,但由于某些重要作物品种的遗传多样性较低,这种方法仍然不够。遗传工程用于从任何遗传库中引入所需的基因,或修饰负责盐胁迫反应或耐受的现有基因的表达,从而提高植物的耐盐性。尽管植物天然产生渗透保护剂作为适应盐胁迫的机制,但它们提供的保护是有限的。最近,人们在鉴定和描述参与渗透保护剂生物合成途径的基因方面取得了进展。已经报道了这些渗透保护剂的外源应用以及它们生物合成途径中酶的遗传工程,可提高不同植物的耐盐性。然而,目前还没有一个明确的机制模型来解释渗透保护剂在转基因植物中的积累如何赋予其耐盐性。本综述批判性地检查了迄今为止通过对海藻糖、甜菜碱和脯氨酸代谢途径基因的遗传工程阐明渗透保护剂提高耐盐性从而提高作物在盐胁迫条件下产量稳定性的潜在机制的研究结果。