Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany.
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
FEBS J. 2021 Jul;288(13):4000-4023. doi: 10.1111/febs.15699. Epub 2021 Feb 5.
Chromatin remodelers use the energy of ATP hydrolysis to regulate chromatin dynamics. Their impact for development and disease requires strict enzymatic control. Here, we address the differential regulability of the ATPase domain of hSNF2H and hCHD3, exhibiting similar substrate affinities and enzymatic activities. Both enzymes are comparably strongly inhibited in their ATP hydrolysis activity by the competitive ATPase inhibitor ADP. However, the nucleosome remodeling activity of SNF2H is more strongly affected than that of CHD3. Beside ADP, also IP inhibits the nucleosome translocation of both enzymes to varying degrees, following a competitive inhibition mode at CHD3, but not at SNF2H. Our observations are further substantiated by mutating conserved Q- and K-residues of ATPase domain motifs. The variants still bind both substrates and exhibit a wild-type similar, basal ATP hydrolysis. Apart from three CHD3 variants, none of the variants can translocate nucleosomes, suggesting for the first time that the basal ATPase activity of CHD3 is sufficient for nucleosome remodeling. Together with the ADP data, our results propose a more efficient coupling of ATP hydrolysis and remodeling in CHD3. This aspect correlates with findings that CHD3 nucleosome translocation is visible at much lower ATP concentrations than SNF2H. We propose sequence differences between the ATPase domains of both enzymes as an explanation for the functional differences and suggest that aa interactions, including the conserved Q- and K-residues distinctly regulate ATPase-dependent functions of both proteins. Our data emphasize the benefits of remodeler ATPase domains for selective drugability and/or regulability of chromatin dynamics.
染色质重塑酶利用 ATP 水解的能量来调节染色质动态。它们对发育和疾病的影响需要严格的酶控。在这里,我们研究了具有相似底物亲和力和酶活性的 hSNF2H 和 hCHD3 的 ATP 酶结构域的差异调节能力。两种酶的 ATP 水解活性都受到竞争性 ATP 酶抑制剂 ADP 的强烈抑制。然而,SNF2H 的核小体重塑活性受到的影响比 CHD3 的更大。除了 ADP 之外,IP 也以竞争性抑制模式抑制 CHD3 的核小体转运,但不抑制 SNF2H。我们的观察结果进一步通过突变 ATP 酶结构域模体的保守 Q 和 K 残基得到证实。这些变体仍然结合两种底物,并表现出与野生型相似的基础 ATP 水解活性。除了三种 CHD3 变体外,没有一种变体可以转运核小体,这首次表明 CHD3 的基础 ATP 酶活性足以进行核小体重塑。结合 ADP 数据,我们的结果提出了 CHD3 中 ATP 水解和重塑之间更有效的偶联。这一方面与 CHD3 核小体转运在远低于 SNF2H 的 ATP 浓度下可见的发现相关。我们提出了两种酶的 ATP 酶结构域之间的序列差异作为功能差异的解释,并表明 aa 相互作用,包括保守的 Q 和 K 残基,可分别调节两种蛋白质的 ATP 依赖性功能。我们的数据强调了重塑酶 ATP 酶结构域在选择性药物治疗和/或染色质动力学调节能力方面的优势。